
Developing an Architecture-independent Graph Framework

for Modern Vector Processors and NVIDIA GPUs

Ilya V. Afanasyev1

c© The Author 2020. This paper is published with open access at SuperFri.org

This paper describes the first-in-the-world attempt to develop an architectural-independent

graph framework named VGL, designed for different modern architectures with high-bandwidth

memory. Currently VGL supports two classes of architectures: NEC SX-Aurora TSUBASA vector

processors and NVIDIA GPUs. However, VGL can be easily extended to other architectures due

to its flexible software structure. VGL is designed to provide users with the possibility of selecting

the most suitable architecture for solving a specific graph problem on a given input data, which, in

return, allows to significantly outperform existing frameworks and libraries, developed for modern

multicore CPUs and NVIDIA GPUs. Since VGL uses an identical set of computational and data

abstractions for all architectures, its users can easily port graph algorithms between different target

architectures without any source code modifications. Additionally, in this paper we show how

graph algorithms should be implemented and optimised for NVIDIA GPU and NEC SX-Aurora

TSUBASA architectures, demonstrating that both architectures have multiple similar properties

and hardware features.

Keywords: vector computers, NVIDIA GPUs, graph algorithms, graph framework, VGL,

CUDA, optimisation.

Introduction

Developing efficient implementations of graph algorithms is an extremely important problem

of modern computer science, since graphs are heavily used in many applications fields: social

networks and web graphs analysis, navigation, solving infrastructural problems, and many oth-

ers. Supercomputing architectures with high-bandwidth memory (HBM) are able to significantly

speed up solving various graph problems, which belong to the data-intensive class and thus po-

tentially benefit from faster memory hierarchy. Nowadays, high-bandwidth memory is installed

either into GPUs or systems with vector processing features (vector processors or CPUs with

vector extensions). Efficiently implementing graph algorithms on systems with high-bandwidth

memory is difficult, since implementation approaches significantly differ from those used for

traditional multicore CPUs, mainly because these systems utilize SIMD-processing (Single In-

struction Multiple Data) features.

Various graph libraries and frameworks have been developed for various modern archi-

tectures, mainly multicore CPUs and NVIDIA GPUs. Graph libraries usually provide highly-

optimised implementations of several fundamental graph algorithms, while graph frameworks

typically include optimised computational and data abstractions, which can be used to easily

express different graph algorithms variations. However, existing graph-libraries and frameworks

have the following drawbacks:

1. none of the existing frameworks and libraries support efficient graph processing on vector

systems (such as NEC SX-Aurora TSUBASA);

2. existing frameworks typically target only a specific architecture, forcing its users to com-

pletely rework the implementation when using a different architecture is required; and

3. existing frameworks in many cases can be further optimized for their target architectures

(including NVIDIA GPUs).

1Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

DOI: 10.14529/jsfi200404

2020, Vol. 7, No. 4 49



To approach the first problem we have previously developed a VGL (Vector Graph Li-

brary)2 [2, 5] framework for the NEC SX-Aurora TSUBASA vector architecture. VGL signifi-

cantly outperforms many existing graph-processing frameworks, developed for modern multicore

CPUs and NVIDIA GPUs.

As shown in [3], NVIDIA GPUs and NEC SX Aurora TSUBASA vector architecture have

many common hardware features. This means that many graph algorithms can be im-

plemented on these architectures with similar optimisation and implementation

approaches. However, at the moment of this writing no research has been carried out to con-

firm (or refute) this thesis. In order to approach this problem, we ported our VGL framework

(originally developed for NEC SX-Aurora TSUBASA vector architecture) to the latest NVIDIA

GPUs, what allowed us to compare implementation and optimisation approaches, which should

be used for both architectures.

As a result we have developed a first-in-the-world architecture independent framework,

which simultaneously targets multiple architectures with high-bandwidth memory: modern NEC

SX-Aurora TSUBASA vector system and NVIDIA GPUs. This is achieved by using a unified set

of computational and data abstractions, identical for all architectures. Moreover, our framework

has flexible software structures, which allow to easily extend it to different architectures (for

example multicore CPUs). This property of VGL allows its users to select the most suitable

architecture for solving a specific graph problem on a given input data, thus solving it consider-

ably faster compared to the existing frameworks and libraries, developed for a single particular

architecture.

The article is organized as follows. Section 1 describes primary target architectures of the

VGL framework: NEC SX-Aurora TSUBASA vector processors and modern NVIDIA GPUs.

Section 2 describes existing state-of-the-art frameworks, developed for modern NVIDIA GPUs

and multicore CPUs. In addition, Section 2 provides the description of computational and data

abstractions, used in the VGL framework. Section 3 describes program structure of the VGL

framework, which allows it to operate on different architectures, and thus to easily port graph

algorithms implementations between them. Section 4 provides a detailed comparison of im-

plementation and optimisation approaches, which are used to implement VGL computational

abstractions on NEC SX-Aurora TSUBASA and NVIDIA GPU architectures. In particular, ef-

fects of different optimisations is compared for these two architectures. Section 5 evaluates the

performance of multiple graph algorithms implemented via VGL framework, as well as VGL

performance against existing graph-processing frameworks for other architectures. Conclusion

summarizes the study and points directions for further work.

1. Target Architectures Overview

1.1. NEC SX-Aurora TSUBASA

The NEC SX-Aurora TSUBASA vector architecture [15, 20] consists of multiple vector

engines (VE), installed into a vector host (VH), which is a typical x86 node. Vector engines

are used as a primary processors for executing vectorised applications, while vector host is used

as a secondary processor for executing basic operating system (OS) functions, as well as some

scalar computations offloaded from the VE. The VE has eight powerful vector cores, each one

operating with vector instructions of 256 length. Each vector core consists of two computational

2VGL is available for free download at vgl.parallel.ru

Developing an Architecture-independent Graph Framework for Modern Vector...

50 Supercomputing Frontiers and Innovations



components: a scalar processing unit (SPU) and a vector processing unit (VPU). All vector

computations are performed by VPUs, while SPUs are designed to provide a relatively high

performance on scalar computations, without the need to explicitly offload them to the vector

host (thus significantly reducing the amount of transfers through interconnect). In the following

subsections the most important hardware characteristics of the NEC SX-Aurora TSUBASA

architecture will be provided, related to graph processing.

1.2. NVIDIA GPU

NVIDIA GPUs [14] are also installed into the system as coprocessors, similar to SX-Aurora

vector engines. Modern NVIDIA GPUs have thousands of CUDA cores, which are grouped into

streaming multiprocessors (SM). Streaming multiprocessors execute instructions based on the

warp concept: a group of 32 threads running on CUDA cores perform exactly the same in-

struction at every given moment of time. This computing model has many common features

with vector computing, since they both belong to SIMD [9] class. This particular feature deter-

mines the fact that various graph algorithms may potentially be implemented similarly on these

two classes of architectures. Further in the paper warps and vector instructions will be some-

times refereed as “SIMD instructions”. In this paper two most recent GPUs of Tesla family are

used: V100 and A100, hardware characteristics of which will be also provided in the following

subsection and simultaneously compared with vector engines.

1.3. Hardware Characteristics Comparison

The main hardware characteristics of the two latest generations of SX-Aurora Vector Engines

and NVIDIA GPUs are listed in Tab. 1. These hardware characteristics most noticeably affect

the performance of graph processing. For example, peak memory bandwidth determines how

fast information about graph edges can be loaded from memory, while the memory capacity

determines graph of which size can be processed using GPU or VE, etc.

Table 1. The comparison between main hardware characteristics of modern NVIDIA

GPUs and NEC SX-Aurora TSUBASA vector engines

Hardware

Characteristic

NEC SX-Aurora

TSUBASA

(1st generation)

NEC SX-Aurora

TSUBASA

(2nd generation)

NVIDIA

V100 GPU

NVIDIA

A100 GPU

Peak memory

bandwidth
1200 GB/s 1500 GB/s 900 GB/s 1500 GB/s

Memory

capacity
48 GB 48 GB 16-32 GB 40-80 GB

LLC size 16 MB 16 MB 6 MB 40 MB

Prefetching support yes yes no yes

LLC bandwidth 3000 GB/s 3000 GB/s N/a N/a

SIMD size 256 256 32 32

Cores number 8 8 5120 6912

Interconnect

bandwidth
up to 32 GB/s up to 32 GB/s up to 300 GB/s up to 600 GB/s

I.V. Afanasyev

2020, Vol. 7, No. 4 51



Based on the provided in Tab. 1 information, the following conclusions can be made. The

first generation of SX-Aurora vector engines have comparable characteristics to V100 GPUs,

while the second generation – to A100 GPUs. However, several differences exist: for example,

GPUs typically have interconnect with higher bandwidth,which allows to copy input graphs into

GPU memory much faster. At the same time vector engines have significantly less resource of

inner parallelism: they use only 8 cores, each one operating with vectors of 256 length, while

modern GPU have thousands of cores, which require even more threads running in order to

efficiently hide memory latency. This potentially allows vector engines to process small-sized

and medium-sized graphs more efficiently compared to GPUs.

2. State of the Art

2.1. Existing Graph-Processing Frameworks

Several graph libraries and frameworks have been recently developed for modern multicore

CPUs and NVIDIA GPUs. Ligra [18], Galois [17] and GAPBS [6] are the most well-known exam-

ples of multicore CPUs frameworks and libraries, while Gunrock [19] CuSHA [13], Medusa [22],

and Enterprise [16] frameworks and libraries target modern NVIDIA GPUs. However, the fol-

lowing factors determine the relevance of developing VGL framework:

• none of the existing frameworks target modern vector systems, such as NEC SX-Aurora

TSUBASA;

• none of the existing frameworks are capable of operating with relatively high performance

on different architectures, such as NVIDIA GPUs, multicore CPUs and vector processors;

and

• performance of almost all existing frameworks and libraries for NVIDIA GPU architectures

can be further improved by applying additional optimisations, discussed in this paper.

2.2. VGL Abstractions

In [2, 5] we have proposed a set of four computational abstractions and four data abstrac-

tions, which can be efficiently implemented on the NEC SX-Aurora TSUBASA architecture.

Further in this paper we will describe how these abstractions can be ported to the NVIDIA

GPU architecture. However, first it is necessary to describe the main functionality of each ab-

straction and discuss why these abstractions are suitable for both classes of architectures.

Graph. A graph is the main data-abstraction of the VGL framework. Graphs in the VGL

are stored in optimized and preprocessed VectCSR format [4]. The VGL framework provides a

convenient interface for working with both directed and undirected graphs. For directed graphs,

outgoing and incoming edges are stored for each vertex, while for undirected graphs all edges

are stored as outgoing. This allows VGL users to easily implement pull-based and push-based

algorithms [7].

Frontier. Frontier is a specific subset of graph vertices and the second important data-

abstraction of the VGL. Frontiers in the VGL allows to control which vertices and edges need to

be processed inside computational abstractions. For example, the advance abstraction processes

all vertices from the input frontier, as well as all their adjacent edges. Frontiers in the VGL

have different types: sparse, dense, and all-active (last one includes all graph vertices). Sparse

Developing an Architecture-independent Graph Framework for Modern Vector...

52 Supercomputing Frontiers and Innovations



frontiers are represented via lists of indices, while dense – via an array of flags, where each flag

corresponds to the presence of vertex inside the frontier.

Vertices array. Vertices arrays allow storing information about graph vertices, for example

current level of each vertex in the BFS (Breadth-First Search) algorithm, or distances to each

vertex in the shortest paths algorithms. Vertices arrays have a straightforward implementation

using aligned arrays, allocated either in vector engine or unified memory of GPUs.

Edges array. Edges arrays allow storing information about graph edges, which is required

when working with weighted graphs. Weighted edges are stored as a structure of arrays, providing

better memory access pattern for vector instructions and warps.

Advance. The advance abstraction is the main tool of traversing graphs in the VGL. The

advance input consists of a graph, an input frontier, and several user-defined handler functions:

vertex preprocess o, edge op, vertex postprocess op. The advance applies vertex preprocess op

to each vertex of its input frontier, edge op to each of its adjacent edges, and then vertex

postprocess op to each vertex again. It is guaranteed that the execution of vertex preprocess op,

edge-processing, and vertex postprocess op operations for each vertex are serialized. However, all

edge op operations for each adjacent edge are executed in parallel. The computational workflow of

the advance abstraction (as well as three others) is illustrated in Fig. 1. The advance abstraction

is used in all situations, when processing graph edges is required.

Figure 1. The computational workflow of VGL abstractions

Compute. The compute abstraction applies a user-defined operation to each vertex of the

given input frontier. Typicality, this abstraction is used for a wide range of operations over graph

vertices: initializing distances in shortest paths, implementing the “hook” phase in connected

component algorithms, and many others.

Reduce. The reduce abstraction applies a user-defined operation (which returns some value)

to each vertex of a given input frontier. The returned values are reduced using additionally

specified reduction operation (SUM, MAX, MIN, AVG). This abstraction can be used for a

I.V. Afanasyev

2020, Vol. 7, No. 4 53



large number of applications: estimating future frontier size in BFS, calculating dangling nodes

inputs in page rank, etc.

Generate New Frontier. The generate new frontier abstraction allows to create a new

frontier of graph vertices, using a specified condition. This condition can be based on vertex id,

its degree, or some data from user-defined vertices arrays.

The described computational abstractions are suitable for both NVIDIA GPUs and NEC

SX-Aurora TSUBASA architectures for the following two reasons. First, each abstraction has

a large resource of so-called data-driven parallelism, since they all execute the same operations

over different data (graph vertices and edges). This allows to efficiently use vector instructions

and warps, which is crucial for both architectures. In addition, each abstraction has a large

resource of inner parallelism, since all graph vertices and edges can be processed in parallel,

what is important since both architectures can be classified as massively-parallel. Thus, the

described abstractions can be implemented on both architectures with approximately the same

level of efficiency, in the case when correct optimisations are applied. These optimisations and

implementation approaches will be described in details further in the paper.

3. Program Structure of VGL Framework

The software structure of the developed framework is illustrated in Fig. 2. This software

structure allows VGL to operate on various target platforms, since all the abstractions have iden-

tical interfaces for all platforms. Each computational abstraction is implemented as a method of

a base class, and has a basic OpenMP parallel implementation. For each architecture, a separate

derived class can be created, where these methods are overloaded to contain architecture-specific

implementations. Implementation and optimisation approaches inside overloaded methods are

not limited to any extend; for example, abstractions for NVIDIA GPU can be implemented

via CUDA, while for NEC SX-Aurora TSUBASA – by using special vector instructions and

directives.

Figure 2. The software structure of the VGL framework. Third-party users are allowed to extend

abstractions for different architecture by implementing derived classes

Data abstractions are split into two categories: architecture-dependent and architecture-

independent. Graph, vertices array and edges array belong to architecture-independent cat-

egory, since they have exactly the same implementation for each architecture currently sup-

ported in VGL. The frontier belongs to the architecture dependent category, since our experi-

Developing an Architecture-independent Graph Framework for Modern Vector...

54 Supercomputing Frontiers and Innovations



ments demonstrated that frontiers require significantly different implementation approaches for

NVIDIA GPU, SX-Aurora TSUBASA and multicore CPUs architectures.

The described software structure allows third-party users to extend VGL on the new ar-

chitectures by implementing derived classes and changing several implementations of abstrac-

tions if necessary. Since interfaces of all abstractions remain exactly the same, graph algorithms

implementations will also remain the same for different architectures, which makes VGL an

architectural-independent framework.

4. Porting VGL Abstractions to NVIDIA GPU: a Detailed

Comparison of Implementation and Optimisation

Approaches

Despite the fact that VGL computational and data abstractions for different architectures

can be implemented independently, for NVIDIA GPUs and NEC SX-Aurora TSUBASA archi-

tectures similar implementation and optimisation approaches can be used in many situations.

Further in this section we will discuss which optimisations have been used for both architec-

tures when implementing different computational abstraction. In the most important cases we

will also demonstrate which acceleration has been achieved on each platform by applying each

optimisation.

Advance. Implementing the advance abstraction on NVIDIA GPUs and vector architec-

tures is difficult since it has highly-irregular computational workflow caused by (1) the irregular

distribution of vertex degrees and (2) a large number of indirect memory accesses performed

during edge traversals. Moreover, the advance abstraction contributes from 50% to 95% of exe-

cution time for many graph algorithms. The main optimisations used in the advance abstraction

are listed in Tab. 2 together with the acceleration values obtained by implementing each of the

optimisations.

Inter-core workload balancing in graph algorithms is typically implemented via splitting

graph vertices into groups based on their degrees. Vertices from different groups are processed

using different amount of hardware resources (cores). Dividing vertices into groups can be im-

plemented either based on graph preprocessing (preliminary sorting graph vertices based on

their degree), or dynamically during graph algorithm execution (using different vertex queues).

According to our experiments both these approaches allow to achieve a comparable accelera-

tion on NVIDIA GPUs, while for the NEC SX-Aurora TSUBASA architecture only the first

approach (preprocessing) can be efficiently used. In order to provide better hardware utilisa-

tion, different groups of vertices can be simultaneously processed on the same GPU or vector

engine. This optimisation can be implemented using CUDA-streams for NVIDIA GPUs, while

OpenMP nested parallelism can be used for the NEC SX-Aurora TSUBASA architecture. This

optimisation allows to achieve higher acceleration on NVIDIA GPUs, since modern GPUs have

significantly larger resource of parallelism, and thus require more graph vertices and edges to be

processed in parallel.

Low-degree vertices should be accurately processed on both architectures, since it is hard to

efficiently use vector instructions or warps when loading information about their adjacent edges.

On both architectures loading information about graph edges with load/store instructions must

have sequential memory access pattern in order to maximise the sustained bandwidth. To achieve

this goal we used two different techniques: constructing graph vector extension [4], or using

I.V. Afanasyev

2020, Vol. 7, No. 4 55



Table 2. The effect of different optimisations applied to the implementation of the advance

abstraction

Optimisation

V100 GPU,

acceleration (times)

NEC SX-Aurora,

TSUBASA

1st generation,

acceleration (times)

Inter-core workload balancing based on graph

preprocessing
6.4 3.1

Dynamic inter-core workload balancing 5.5 0.93

Concurrent processing of different group of vertices 1.9 0.8

SIMD-processing of low-degree vertices based on vector

extension
1.4–5.2 2.1–8.1

SIMD-processing of low-degree vertices based on virtual

warp
4.8 0.5

Graph clusterisation 5 3.8

Prefetching most frequently accessed vertices into LLC – 1.2

Switching from push to pull-based graph traversal 0.9 1.7

Packing indirectly accessed 4-byte into 8-byte 1.1 1.3

“virtual warp” concept [12]. Vector extension allows to process groups of VECTOR LENGTH

vertices by simultaneously processing first edges of all vertices (using a single SIMD instruction),

then second, and etc. Virtual warps concept is based on splitting SIMD instruction in separate

parts, with each part processing vertices in a fixed range, as shown in Fig. 3. Vector extension

allows to achieve a very significant and comparable acceleration on both architectures, while

applying “virtual warp” concept to vector instructions leads to program slowdown on the NEC

SX-Aurora TSUBASA architecture.

In order to efficiently load information about indirectly accessed graph vertices, the clus-

terisation [21] should be used for both architectures. The clusterisation is based on grouping

information about most frequently accessed graph vertices in the adjacent regions of memory,

which can be later prefetched into LLC cache (which allows to obtain an additional acceleration

on the NEC SX-Aurora TSUBASA).

The performance of the advance abstraction also depends on the direction, in which graph

edges are traversed. During pull traversal [7] in VGL the incoming edges are processed, while

during push – the outgoing. According to our experiments, pull-direction is preferable for NEC

SX-Aurora TSUBASA architecture, while push – on GPUs. Finally, for the NEC SX-Aurora

TSUBASA multiple indirectly accessed values can be packed into 8-byte values, since gather and

scatter instructions to 8-byte values are approximately 2 times faster compared to 4-byte values

for this architecture. On NVIDIA GPUs, such optimisation does not provide any significant

acceleration.

Compute. The implementation of the compute abstraction on both architectures is almost

identical and straightforward, since all its operations can be performed independently in parallel.

Developing an Architecture-independent Graph Framework for Modern Vector...

56 Supercomputing Frontiers and Innovations



Figure 3. Vector extension against virtual warps comparison. Red edges are simultaneously

processed using a single vector instruction of length 4

On NVIDIA GPUs the compute abstraction is implemented via a parallel CUDA kernel, while

on NEC SX-Aurora TSUBASA – via a vectorized parallel loop.

Reduce. For the NEC SX-Aurora TSUBASA architecture, the reduce abstraction is imple-

mented via a vectorized and parallelized loop, where each vector core accumulates the reduced

values on vector registers. This way the reduction vector instructions are executed only on the

last stage of algorithm, when the obtained on vector registers values are reduced into the scalars.

On the NVIDIA GPU architecture, the reduction is implemented based on using parallel reduc-

tion inside shared memory [10]. However, the reduce is implemented on NVIDIA GPUs less

efficiently since shared memory has a higher latency compared to vector registers.

Generate New Frontier. The generate new frontier abstraction on GPUs is implemented

based on parallel prefix sum algorithm [11], which generates indexes of vertices from the output

frontier. On the NEC SX-Aurora TSUBASA a different algorithm is implemented [5], which

generates lists of frontier indexes using special vector buffers, later unrolling them into a linear

list. Both these approaches demonstrate approximately the same performance.

5. Performance Evaluation

The performance of the VGL framework has been evaluated on cluster equipped with (1) 12-

core Intel (R) Xeon (R) Gold 6126 processors, (2) NVIDIA V100 and (3) A100 GPUs, and (4) SX-

Aurora TSUBASA Type 10B (First Generation) vector engines. Unfortunately, at the moment

of this writing we do not have an access to the second generation of SX-Aurora TSUBASA

architecture. As input graphs we used synthetic RMAT [8] and several real-world graphs from

the SNAP [1] collection.

The performance evaluation is split into two stages. On the first stage we compared the

performance of VGL-based implementations launched on SX-Aurora TSUBASA, V100 and A100

GPUs. This comparison is demonstrate in Fig. 4 for different graph problems and algorithms.

I.V. Afanasyev

2020, Vol. 7, No. 4 57



(a) Top-down BFS (b) Page rank

(c) Generalized Bellman–Ford shortest paths (d) Shilloah–Vishkin connected components algo-

rithm

Figure 4. The comparison of VGL-based implementations of different graph problems and al-

gorithms

The following conclusions can be made based on the provided performance data. The first

generation NEC SX-Aurora TSUBASA vector engines have a comparable with V100 perfor-

mance on medium-sized and large graphs, which once again confirms the thesis about the sim-

ilarity of these architectures. At the same time, SX-Aurora implementations are significantly

faster on small-sized RMAT and most of real-world graphs, which have relatively small size.

This can be explained by the fact that SX-Aurora requires significantly less vertices and edges,

which have to be processed in parallel in order to efficiently utilize hardware resources.

At the second stage, the importance of developing of an architectural-independent framework

is demonstrated in Fig. 5. For a specified graph problem and input graph we selected the fastest

VGL-based implementation (among SX-Aurora and V100 GPU architectures), and compared

it to the fastest available among CPU-based and GPU-based frameworks and libraries, listed

in Section 2. The necessity of selecting different architectures can be explained by the fact

that different architectures are faster at processing different input graphs, as shown in Fig. 4.

According to our experiments, the Gunrock framework and NVGRAPH library provide the

highest performance on NVIDIA GPUs, while GAPBS library has the highest performance

among single-socket multicore CPU implementations. As shown in Fig. 5, VGL outperforms

these frameworks and libraries from 3 to 15 times on different input graphs.

Conclusion

In this paper we have described the first-in-the-world attempt to develop an architecture-

independent graph framework VGL, which targets multiple modern systems with high-

Developing an Architecture-independent Graph Framework for Modern Vector...

58 Supercomputing Frontiers and Innovations



(a) Top-down BFS (b) Shilloah–Vishkin connected components algo-

rithm

Figure 5. The comparison of VGL-based implementations to best available multicore CPU and

NVIDIA GPU frameworks

bandwidth memory: NEC SX-Aurora TSUBASA and NVIDIA GPUs. VGL has from 3 to 15

times better performance compared to the existing frameworks, developed for modern multicore

CPUs and NVIDIA GPUs. Moreover, due its flexible software structure, the VLG framework can

be easily extended to other massively parallel architectures, such as the A64FX, AMD EPYC

Rome and Intel KNL, which is an important direction of future research.

Finally, in this paper we have compared optimisation approaches, which should be used in

order to efficiently implement graph algorithms on NEC SX-Aurora TSUBASA vector processors

and NVIDIA GPUs. Applying various optimisations, such as graph clusterisation or constructing

graph vector extension, allowed to achieve similar acceleration on both these architectures, which

emphasizes the similarity of these architectures in the context of implementing various graph

algorithms.

Acknowledgements

The reported study was funded by RFBR and JSPS, project number 21-57-50002.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Stanford Large Network Dataset Collection – SNAP. https://snap.stanford.edu/data/

(2020), accessed: 2020-12-29

2. Afanasyev, I.V.: Developing a prototype of high-performance graph-processing framework

for NEC SX–Aurora TSUBASA vector architecture. Numerical methods and programming

21, 290–305 (2020), DOI: 10.26089/NumMet.v21r325

3. Afanasyev, I.V., Voevodin, V.V., Kobayashi, H., et al.: Analysis of relationship between

SIMD-processing features used in NVIDIA GPUs and NEC SX-Aurora TSUBASA vector

processors. In: Malyshkin, V. (ed.) International Conference on Parallel Computing Tech-

nologies, PaCT 2019. Lecture Notes in Computer Science, vol. 11657, pp. 125–139. Springer

(2019), DOI: 10.1007/978-3-030-25636-4 10

I.V. Afanasyev

2020, Vol. 7, No. 4 59

https://snap.stanford.edu/data/
http://dx.doi.org/10.26089/NumMet.v21r325
http://dx.doi.org/10.1007/978-3-030-25636-4_10


4. Afanasyev, I.V., Voevodin, V.V., Kobayashi, H., et al.: Developing efficient imple-

mentations of shortest paths and page rank algorithms for NEC SX-Aurora TSUB-

ASA architecture. Lobachevskii Journal of Mathematics 40(11), 1753–1762 (2019),

DOI: 10.1134/S1995080219110039

5. Afanasyev, I.V., Voevodin, V.V., Komatsu, K., et al.: VGL: a high-performance graph

processing framework for the NEC SX-Aurora TSUBASA vector architecture. The Journal

of Supercomputing (2021), DOI: 10.1007/s11227-020-03564-9

6. Azad, A., Aznaveh, M.M., Beamer, S., et al.: Evaluation of graph analytics frameworks

using the GAP benchmark suite. In: IEEE International Symposium on Workload Char-

acterization, IISWC 2020, 27-30 October 2020, Beijing, China. pp. 216–227. IEEE (2020),

DOI: 10.1109/IISWC50251.2020.00029

7. Besta, M., Podstawski, M., Groner, L., et al.: To push or to pull: On reducing commu-

nication and synchronization in graph computations. In: Huang, H.H., Weissman, J.B.,

Iamnitchi, A., et al. (eds.) Proceedings of the 26th International Symposium on High-

Performance Parallel and Distributed Computing, HPDC 2017, 26-30 June 2017, Wash-

ington, DC, USA. pp. 93–104. ACM (2017), DOI: 10.1145/3078597.3078616

8. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph mining.

In: Berry, M.W., Dayal, U., Kamath, C., et al. (eds.) Proceedings of the Fourth SIAM

International Conference on Data Mining, 22-24 April 2004, Lake Buena Vista, Florida,

USA. pp. 442–446. SIAM (2004), DOI: 10.1137/1.9781611972740.43

9. Flynn, M.J.: Very high-speed computing systems. Proceedings of the IEEE 54(12), 1901–

1909 (1966), DOI: 10.1109/PROC.1966.5273

10. Harris, M., et al.: Optimizing parallel reduction in CUDA. NVIDIA Developer Technology

2(4), 70 (2007)

11. Hillis, W.D., Steele Jr., G.L.: Data parallel algorithms. Commun. ACM 29(12), 1170–1183

(1986), DOI: 10.1145/7902.7903

12. Hong, S., Kim, S.K., Oguntebi, T., et al.: Accelerating CUDA graph algorithms at maximum

warp. SIGPLAN Not. 46(8), 267–276 (2011), DOI: 10.1145/2038037.1941590

13. Khorasani, F., Vora, K., Gupta, R., et al.: CuSha: vertex-centric graph processing on

GPUs. In: Plale, B., Ripeanu, M., Cappello, F., et al. (eds.) The 23rd International Sym-

posium on High-Performance Parallel and Distributed Computing, HPDC’14, 23-27 June

2014, Vancouver, BC, Canada. pp. 239–252. ACM (2014), DOI: 10.1145/2600212.2600227

14. Kirk, D.: NVIDIA CUDA software and GPU parallel computing architecture. In: Mor-

risett, G., Sagiv, M. (eds.) Proceedings of the 6th International Symposium on Memory

Management, ISMM 2007, 21-22 October 2007, Montreal, Quebec, Canada. pp. 103–104.

ACM (2007), DOI: 10.1145/1296907.1296909

15. Komatsu, K., Watanabe, O., Musa, A., et al.: Performance evaluation of a vector super-

computer SX-Aurora TSUBASA. In: Proceedings of the International Conference for High

Performance Computing, Networking, Storage, and Analysis, SC 2018, 11-16 November

2018, Dallas, TX, USA. pp. 54:1–54:12. IEEE Press (2018)

Developing an Architecture-independent Graph Framework for Modern Vector...

60 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1134/S1995080219110039
http://dx.doi.org/10.1007/s11227-020-03564-9
http://dx.doi.org/10.1109/IISWC50251.2020.00029
http://dx.doi.org/10.1145/3078597.3078616
http://dx.doi.org/10.1137/1.9781611972740.43
http://dx.doi.org/10.1109/PROC.1966.5273
http://dx.doi.org/10.1145/7902.7903
http://dx.doi.org/10.1145/2038037.1941590
http://dx.doi.org/10.1145/2600212.2600227
http://dx.doi.org/10.1145/1296907.1296909


16. Liu, H., Huang, H.H.: Enterprise: breadth-first graph traversal on GPUs. In: Kern, J.,

Vetter, J.S. (eds.) Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis, SC 2015, 15-20 November 2015, Austin, TX,

USA. pp. 68:1–68:12. ACM (2015), DOI: 10.1145/2807591.2807594

17. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph analytics.

In: Kaminsky, M., Dahlin, M. (eds.) ACM SIGOPS 24th Symposium on Operating Systems

Principles, SOSP ’13, 3-6 November 2013, Farmington, PA, USA. pp. 456–471. ACM (2013),

DOI: 10.1145/2517349.2522739

18. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared mem-

ory. SIGPLAN Not. 48(8), 135–146 (2013), DOI: 10.1145/2517327.2442530

19. Wang, Y., Davidson, A.A., Pan, Y., et al.: Gunrock: a high-performance graph processing

library on the GPU. In: Asenjo, R., Harris, T. (eds.) Proceedings of the 21st ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP 2016, 12-16 March

2016, Barcelona, Spain. pp. 11:1–11:12. ACM (2016), DOI: 10.1145/2851141.2851145

20. Yamada, Y., Momose, S.: Vector Engine Processor of NEC Brand-New supercomputer SX-

Aurora TSUBASA. In: International symposium on High Performance Chips, Hot Chips

2018, August 2018, Cupertino, USA (2018)

21. Zhang, Y., Kiriansky, V., Mendis, C., et al.: Making caches work for graph analytics. In:

Nie, J., Obradovic, Z., Suzumura, T., et al. (eds.) 2017 IEEE International Conference

on Big Data, BigData 2017, 11-14 December 2017, Boston, MA, USA. pp. 293–302. IEEE

Computer Society (2017), DOI: 10.1109/BigData.2017.8257937

22. Zhong, J., He, B.: Medusa: Simplified graph processing on GPUs. IEEE Trans. Parallel

Distributed Syst. 25(6), 1543–1552 (2014), DOI: 10.1109/TPDS.2013.111

I.V. Afanasyev

2020, Vol. 7, No. 4 61

http://dx.doi.org/10.1145/2807591.2807594
http://dx.doi.org/10.1145/2517349.2522739
http://dx.doi.org/10.1145/2517327.2442530
http://dx.doi.org/10.1145/2851141.2851145
http://dx.doi.org/10.1109/BigData.2017.8257937
http://dx.doi.org/10.1109/TPDS.2013.111

	I.V. Afanasyev

