
Improving Quantum Annealing Performance on Embedded

Problems

Michael R. Zielewski1 , Mulya Agung2 , Ryusuke Egawa3 ,

Hiroyuki Takizawa1,2

c© The Authors 2020. This paper is published with open access at SuperFri.org

Recently, many researchers have been investigating quantum annealing as a solver for real-

world combinatorial optimization problems. However, due to the format of problems that quantum

annealing solves and the structure of the physical annealer, these problems often require additional

setup prior to solving. We study how these setup steps affect performance and provide insight into

the interplay among them using the job-shop scheduling problem for our evaluation. We show that

the empirical probability of success is highly sensitive to problem setup, and that excess variables

and large embeddings reduce performance. We then show that certain problem instances are unable

to be solved without the use of additional post-processing methods. Finally, we investigate the

effect of pausing during the anneal. Our results show that pausing within a certain time window

can improve the probability of success, which is consistent with other work. However, we also show

that the performance improvement due to pausing can be masked depending on properties of the

embedding, and thus, special care must be taken for embedded problems.

Keywords: quantum annealing, quantum computer, job-shop scheduling, combinatorial opti-

mization.

Introduction

As quantum computing devices are increasing in size and availability, quantum computing

is experiencing a surge of interest as a method to efficiently solve problems that are other-

wise impractical for classical computers or for which even small speedups are desirable. This

interest is justified by existing quantum algorithms that improve upon classical ones, such as

Shor’s algorithm for integer factorization [31] and Grover’s search algorithm [14]. One type of

quantum computing that excels at solving combinatorial optimization problems is quantum an-

nealing (QA). By exploiting fundamental quantum mechanical properties, such as tunneling

and superposition, QA has high potential to efficiently find high quality solutions [18]. While

early results [15, 20] may not have seemed promising for QA over classical solvers, later re-

sults [2, 12, 24] were more promising, and indicated that harder benchmark problems reveal the

power of QA over classical solvers. QA achieves computation by preparing a system in an initial

quantum configuration, and slowly evolving the system toward a final configuration, which rep-

resents the target problem. According to the adiabatic theorem, if the system is evolved slowly

enough, it will remain in the ground state and the final qubit values represent a solution to the

target problem [13]. However, due to problem properties, thermal excitations, noise, and other

factors, the system does not always remain in the ground state; thus, solutions may not be

found. Performance and usability are further impacted by preparatory steps required not only

by QA, but also by the current physical implementation of QA.

One of the major challenges in using QA is converting problems to quadratic unconstrained

binary optimization (QUBO) form, which is the native problem that QA solves. QUBO form

requires that all variables take binary values, and that all variable terms are of degree two or less.
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For some types of problems, such as integer programming problems, conversion of non-binary

variables to binary variables can be achieved through techniques such as one-hot encoding, yet

will result in a significantly higher number of variables in the QUBO. For other types of problems

that already use binary variables, such as the satisfiability problem, additional variables may

be introduced when reducing terms having a degree greater than two. Therefore, it is clear that

conversion to QUBO form often results in a problem containing significantly more variables than

the original representation did.

A second challenge associated with current QA arises from the physical quantum process-

ing unit (QPU) that implements QA. Commercially available QPUs have limited connectivity

between qubits, and impose similar constraints on qubits in QUBOs. Limited connectivity can

be remedied through minor embedding, which is a process that produces a mapping of a QUBO

to the QPU, while allowing one logical qubit to be represented by a “chain” of multiple phys-

ical qubits. A problem that requires embedding is known as an embedded problem. As many

applications, such as the one considered in this work, contain multiple variables that must be

represented by qubit chains, the number of qubits in an embedding can be significantly larger

than in its corresponding QUBO. This effectively reduces the maximum sizes of problems that

can be solved by the QPU, especially for embedded problems with variables that share many

constraints and have high connectivity.

The effects that problem formulation and embedding have on performance are not well stud-

ied. The purpose of this work is to investigate these effects, determine methods through which

performance can be maximized, and investigate the interplay between them. We select schedul-

ing problems for our evaluation. Scheduling is one of the most ubiquitous types of problems in

optimization and has applications in many fields. The standard form of these problems is finding

an assignment of tasks to resources that satisfies problem constraints [6]; however, real world

applications require domain specific variants [16, 29, 32, 35]. In this work, we select the standard

n×m job-shop scheduling problem (JSP) to evaluate the performance of QA. One characteristic

of the JSP that makes it a suitable candidate for evaluating the performance of QA is that it is

NP-hard, and often requires the use of heuristic solvers. Furthermore, binarization of the JSP

results in extra variables, which can have a significant impact on performance. Additionally, the

structure and connectivity of the JSP necessitates embedding, which allows us to evaluate the

performance of a multitude of unique embeddings. Seeking methods to improve performance,

we also evaluate post-processing techniques and modified anneal schedules that include a pause.

Finally, we conclude with a suggestion of how the considered methods can be combined to ad-

dress the above challenges and achieve high performance with QA on embedded problems. The

main contributions of this work can be summarized as follows:

• We investigate the impacts of problem formulation and embedding on performance;

• We provide methods to improve performance and show the interplay between them;

• We show that the effects of anneal pausing can be masked with a poor selection of embed-

ding, and provide an explanation as to why this occurs; and

• We suggest a combined approach to achieve high performance on embedded problems.

The rest of this paper is organized as follows. Section 1 provides background on QA and its

current implementation, and reviews a JSP formulation for QA. Then, in Section 2, we describe

in detail our methods for variable reduction, embedding, post-processing, and anneal schedule

modification. Section 3 contains our evaluation setup, results, and analysis. Related work is

discussed in Section 4. The final section contains our conclusions and potential future direction.
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1. Background

In this section, we first describe QA in detail. We then introduce our target problem, the

JSP, and provide details on how it can be formulated for QA.

1.1. Quantum Annealing

QA is a quantum mechanical metaheuristic for minimizing combinatorial optimization prob-

lems. System evolution follows a time-dependent Hamiltonian of the form

H(s) = A(s)HI +B(s)HF , (1)

where A and B are time-dependent coefficients, HI is the initial Hamiltonian, HF is the final or

problem Hamiltonian, and s is the re-scaled annealing time taking values in the range [0, 1]. In

a system of N qubits, HI and HF are given by

HI =

N∑

i=1

σix, (2)

and

HF =

N∑

i

hiσ
i
z +

N∑

i

N∑

j=i+1

Ji,jσ
i
zσ

j
z, (3)

where σiz and σjz are the Pauli matrices operating on qubits i and j, and h and J are local biases

and coupling strengths that encode the problem to be solved.

System evolution starts at s = 0 in the ground state of HI , where A is large and B = 0.

Tunneling strength, which is determined by A, is initially strong and analogous to the tempera-

ture term in the classical metaheuristic simulated annealing [21]. As system evolution progresses,

A monotonically decreases to 0 and B monotonically increases, introducing HF . According to

the adiabatic theorem, the system will remain in the ground state provided that evolution is

sufficiently slow with respect to the minimum gap, that is, the difference in energy between the

two lowest energy states of the system [13].

When system evolution ceases at s = 1, the system is in a classical state described by the

Ising model

E(s) =

N∑

i

hisi +

N∑

i

N∑

j=i+1

Ji,jsisj , (4)

where si ∈ {±1} are spin variables. Similar to the Ising model, but having binary variables

xi ∈ {0, 1}, is the QUBO problem of the form

E(x) =

N∑

i

N∑

j=i

Qi,jxixj , (5)

where Qi,j is a matrix containing local and quadratic biases. Note that QUBO variables can

be converted to Ising variables with the mapping si = 2xi − 1. Due to the binary values of

the QUBO matching those most frequently used in traditional computing, we use QUBO form

throughout the rest of this work.
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(c) Embedded into a unit cell

Figure 1. An example embedding for a problem consisting of three variables

In QA, there are no limitations placed on the connectivity of qubits; however, in current

QPUs implementing QA, qubit connectivity is limited. In the QPU used in this work, the

layout of qubits in the QPU follows the C16 Chimera graph, which is a 16 × 16 grid of K4,4

bipartite graphs, termed unit cells. In this graph, vertices, and thus qubits, have a maximum

connectivity of six. To solve QUBOs with variables having higher connectivity, or QUBOs that

have a structure that does not match that of the QPU, a technique called minor embedding must

first be performed. In minor embedding, connectivity between logical variables in the QUBO is

achieved by allowing the variables to be represented by a “chain” of multiple physical qubits

in the QPU. To ensure that all qubits of a chain take the same value, a strong negative bias is

used for intra-chain couplings. Problems that require chaining often use far more qubits in the

QPU than variables in their QUBO, which effectively reduces the maximum sizes of problems

that can be solved directly on the QPU.

We provide an example problem that requires embedding, as well as a potential embedding

for it, in Fig. 1. The problem contains three fully connected variables, and can be represented

graphically by a triangle, as shown in Fig. 1a. Note that in the unit cell in Fig. 1c, no three

vertices can be used to represent this system. Only by chaining a variable, as is done in Fig. 1b,

is it possible to embed the system into the unit cell as shown in Fig. 1c.

1.2. Job-shop Scheduling Problem

In this work, we consider the standard n × m JSP in which a set of n jobs J is to be

scheduled on a set of m machines M [4]. Each job j ∈ J must be processed exactly once by

each machine r ∈ M . The processing of a job on a machine is called an operation, denoted by

oi ∈ O = {o1, . . . , on×m}, where every oi corresponds to the machine r on which the operation

is to be executed. Each operation has a corresponding positive integer processing duration di ∈
D = {d1, . . . , dn×m}. The i-th set of operations and processing durations corresponds to job ji.

We seek a schedule of J on M that respects the following three constraints. First, operations

of a job must take place in the order defined in O, and no operation can start until all preceding

operations have completed. Second, machines can only execute one operation having a nonzero

processing duration at any given time. Lastly, all operations must be scheduled with exactly one

starting time and cannot be interrupted during processing. A schedule is valid if none of these

constraints are violated.

We define the shortest time in which all operations complete, the optimal makespan of an

instance, with T . In the optimization version of the JSP, we aim to minimize the makespan of

a schedule in such a way that the makespan is nearest to the instance’s optimal makespan. In

this work, we consider the decision variant of the JSP, in which we only seek a valid schedule.
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Before solving any problem with QA, its representation must be made compatible with

QUBO form. Typical problem representations may be composed of non-binary variable types,

such as integers, which are not directly compatible with QUBO form and require transforma-

tion [23]. One common method of integer variable binarization is to use one-hot encoding [26]. In

this method, given an integer variable whose values span N integers, we define P = (p1, . . . , pN )

as the sequence of those integer values. A vector of binary variables x = [x1, ..., xN ], xi ∈ {0, 1},
is used to represent P in such a way that if xi = 1, the i-th element of P is selected. In order to

maintain a coherent representation by ensuring that exactly one value is selected, the following

constraint is introduced:

N∑

i

xi = 1. (6)

This constraint can then be modeled as the following penalty

(
N∑

i

xi − 1

)2

. (7)

One method of binarizing the JSP is for a binary variable xi,t to represent the execution

of operation i at time t [6]. In this work, we use a formulation that was introduced in [36]

that has already been used with QA and in which binarization is achieved through variables

xi,t representing the starting of operation i at time t. One limitation of these methods is that

they require T̃ , an estimation of T used for limiting the number of binary variables created. An

estimate that is less than T results in a QUBO that cannot solve the JSP instance. On the other

hand, overestimating T produces an excess of binary variables. The penalties applied to these

variables, representing their constraints, that are used to construct the QUBO are:

∑

i

(∑

t

xi,t − 1

)2

, (8)

∑

n




∑

kn−1<i<kn

t+pi>t′

xi,txi+1,t′


 , (9)

∑

m


 ∑

(i,t,k,t′)∈Rm

xi,txk,t′


 . (10)

These penalties can be summarized as follows: Equation (8) penalizes configurations in which

operations do not start exactly once, Equation (9) penalizes out of order execution for operations

within a job, and Equation (10) penalizes configurations that violate the capacity of a machine.

For additional details, the reader is directed to [36].

2. Methods

In this section, we introduce the methods that are required for preparing a problem for QA

as well as those that will be used to improve the performance of QA on the JSP.
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2.1. Variable Reduction

To investigate the impacts of the formulation process on the performance of QA, we employ

two commonly used software packages for creating QUBOs. The first of these packages is D-Wave

Binary CSP (DBC). This tool is used to convert constraint satisfaction problems to QUBO form

and is developed by D-Wave Systems [8]. The second package is PyQUBO (PYQ), developed by

Recruit Communications [28]. While the object of this work is not to directly compare these two

tools, we observe that the output QUBOs can differ, despite both being constructed from the

same penalties and capable of producing correct schedules. For small size problems, DBC and

PYQ often output identical QUBOs; however, as problem size increases, DBC outputs larger

QUBOs than PYQ. The source of this discrepancy is auxiliary variables, which are only found

in QUBOs constructed by DBC. While auxiliary variables are typically introduced to reduce

polynomial terms with a degree higher than two, none of the terms in Equations (8), (9), or (10)

contain such terms. Thus, the creation of auxiliary variables can be considered a software error

that can be corrected. However, as QUBOs produced by DBC are able to successfully solve JSP

instances, a comparison of results from the QUBOs of the two tools will help to emphasize the

impact that formulation efficiency has on performance.

A second method of variable reduction is variable pruning, which is a formulation dependent

method for removing variables that cannot be set in valid solutions. We adopt the variable

pruning method from [36]. This method first examines the duration and order of operations

within a job. Then, variables are removed if they allow an operation to execute at a time that

would result in an invalid schedule. The specific conditions for which a variable is pruned are if it

allows an operation to start earlier than the sum of the processing durations of its predecessors,

or if it allows an operation to start later than the sum of the processing durations of itself and

its successor operations subtracted from T̃ . Therefore, by identifying the variables which meet

these conditions, a set of variables can be pruned.

2.2. Re-Embedding

We generate embeddings for QUBOs with the heuristic minor embedding algorithm de-

scribed in [7], which is the standard algorithm for problems of arbitrary structure. Owing to

its heuristic nature, the minor embedding algorithm generates embeddings over a range of sizes

where the largest often require double the amount of qubits than the smallest do. The signifi-

cance of this becomes apparent when considering the number of qubits available in the QPU; if

a QUBO is especially large or its variables have connectivity that is difficult to achieve on the

QPU, the embedding algorithm may fail to find any embedding. Additionally, we generally seek

embeddings that minimize either the total number of qubits required or maximum chain lengths

in order to avoid factors that degrade performance, such as early freezeout [3, 7]. In order to

find smaller embeddings for QUBOs and to evaluate performance at different embedding sizes,

we repeat the embedding process for each QUBO.

2.3. Post-Processing

An additional post-processing step is required for problems that require chains of physical

qubits. During post-processing, chains are examined to determine the value of the corresponding

logical qubit. This step is necessary because despite the strong coupling bias between qubits in a

chain, which compels the qubits to take the same value, the values within a chain do not always
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match at the end of an anneal. In the case where all qubits within a chain take the same value,

the logical qubit also takes that value. However, if the values within a chain span both binary

values, the chain is “broken”, and additional logic is required to determine which value the

logical qubit should take. We consider two post-processing methods for resolving broken chains:

majority voting (MV), which is provided in [9]; and minimizing energy (ME), which is provided

in [10]. In the first method, MV, the logical qubit takes on the value that most frequently occurs

in the chain. The second method, ME, implements a greedy algorithm that assigns the value

resulting in the lowest energy penalty based on linear and quadratic biases associated with the

variable. Related work has shown that MV can reduce the penalty of a broken chain, but leads

to higher penalties from constraints of neighboring qubits [29]. We expect that ME will result

in higher performance since it accounts for neighboring qubits when selecting the value for a

broken chain.

2.4. Anneal Schedule Modifications

The D-Wave 2000Q provides annealing controls, which are special features that provide

additional control over the anneal schedule, beyond specifying the annealing time. These controls

have been used to great effect in improving performance [16, 17, 22, 25, 38]. In this work, we

focus on modifying the anneal schedule so that it includes a pause, a period of time during which

A and B remain constant. Marshall et al. [25] have shown that pausing at the right time allows

the system to relax to the ground state, and improves success probability by orders of magnitude.

A follow-up study performed by Izquierdo et al. [17] evaluated the performance improvement

from pausing on embedded problems. However, there is, as yet, no evaluation into the effect

that embedding size has on the performance improvement from pausing. In this work, we seek

to extend the understanding of pausing and explain the effect of embedding size on pausing. To

accomplish this, we perform additional anneals with modified annealing schedules that include

a pause, similar to what is done in [17, 25].

3. Evaluation and Discussion

This section presents our evaluation configuration, evaluation results, and ends with a dis-

cussion of our findings.

3.1. Configuration

We solve JSP instances on the D-Wave 2000Q quantum computer. The instances on which

we evaluate QA are randomly generated with n = m ∈ {3, 4, 5, 6, 7} with operation processing

durations, di ∈ D, selected from a subset of {0, 1, 2}. For each instance, T is found by solving the

instance with a classical solver. The formulation described in Section 1.2 is implemented, with

T̃ = T , and a QUBO is generated with both DBC and PYQ. Initial results showed that variable

pruning was a necessary procedure for obtaining any valid schedules, regardless of instance size.

Thus, variable pruning is performed on each instance and no results are shown for QUBOs whose

variables have not been pruned. The minor embedding algorithm was repeated one million times

in order to collect embeddings of different sizes for each QUBO. Starting from 102 random JSP

instances, QA was performed on a total of 36, 805 embeddings. For all samples taken with the

annealer, the anneal time was set to 20 µs, and 300 anneals were performed, with all other
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parameters set to their default values. In the final experiment, in which we introduce a pause

into the anneal schedule, the pause duration is set to 100 µs. Pause locations were limited to

the range [0.25, 0.75], after initial testing revealed that the optimal pause location consistently

occurred between these values, and pause locations were selected at intervals of 0.01. We also

applied ten spin-reversal transforms, a procedure that is used to reduce the effect of hardware

biases on results, and has been shown to be a critical step in analyzing the effects of pausing [17].

A limited set of instances was selected for evaluation, and embeddings for each instance were

selected uniformly, based on the number of qubits required for the embedding.

We evaluate the performance of QA using Psuccess, the observed probability of successfully

finding a valid schedule, that is, one that violates no constraints and is the ground state of HF .

This is a standard metric [16, 17] for evaluating the performance of QA and is defined as

Psuccess =
number of valid schedules

number of anneals
. (11)

3.2. Results

We first show the effect of variable reduction on QUBO size and the embedding process.

Figure 2 shows the number of variables in QUBOs generated by DBC and PYQ for JSP instances

where n = m = 4, and T ranges from 5 to 13. This figure shows the effect described in Section 2.1;

DBC and PYQ output QUBOs of equal size for small JSP instances, yet for larger ones, DBC

introduces unnecessary auxiliary variables, resulting in larger QUBOs. For the largest instance

in this figure — where T = 13 — auxiliary variables comprise 22% of the variables in the DBC

QUBO. The effects that this has on the embedding process are shown in Fig. 3, which compares

the frequency distributions of embedding sizes, which are approximately normal, for the JSP

instances where T = 9 and T = 13 in Fig. 2. When T = 9, the small amount of auxiliary variables

produced by DBC have a relatively small effect on the embedding size distribution, resulting in

the distribution being shifted right and thus embeddings being larger. On the other hand, when

T = 13, the significant number of auxiliary variables has a considerable effect on embedding

size. Furthermore, the increased number of variables in the QUBO also affects the failure rate

of the embedding algorithm. In this figure, the failure rate of the algorithm is visualized by

redistributing the percentage of failed embeddings to each embedding size proportionally, based

on the percentage of successful embeddings generated for that size. We see that the embedding

failure rate is only 25% for the PYQ QUBO, but is as high as 96% for the DBC QUBO.

These results show that an efficient formulation is necessary to minimize failed embeddings and

embedding size.

Next, we evaluate the performance implications of embedding size on Psuccess. In Fig. 4,

Psuccess is shown for JSP instances where n = m = 4, yet having different operation processing

times than the instances used for Fig. 2 and Fig. 3. For this series of data, the default post-

processing method MV is used. These figures show the effect that unnecessary variables have

on Psuccess; annealing using embeddings generated from the DBC QUBO produces no valid

schedules. Figure 4a also shows that Psuccess is moderately negatively correlated with embedding

size (r = −0.69), and thus, fewer valid schedules are found with larger embeddings. This effect

is also visible in Fig. 4b, where only the smallest embeddings of the PYQ QUBO have a nonzero

Psuccess. These results emphasize not only the advantages of using smaller embeddings but also

the disadvantages of using larger embeddings.
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Figure 2. Comparison of the number of variables in QUBOs by tool

(a) T = 9 (b) T = 13

Figure 3. Distributions of embedding sizes for two JSP instances

(a) T = 6 (b) T = 10

Figure 4. Downward trend in Psuccess

We provide additional statistics on the embedding process in Fig. 5 and Fig. 6, where we

show the median embedding time and embedding failure rate, which both increase with QUBO

size. We see that for relatively small QUBOs, the cost of re-embedding is low due to short
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Figure 5. Median embedding times Figure 6. Embedding failure rates

Table 1. Summary of post-processing methods

Psuccess comparison Percentage

MV < ME 33.32

MV > ME <0.01

MV = ME = 0 56.80

MV = ME 6= 0 9.87

embedding time and low embedding failure rate. On the other hand, for larger QUBOs, the

cost of re-embedding is high due to both the long embedding time and high embedding failure

rate. Considering these costs alone may suggest that re-embedding is a poor choice for large

QUBOs; however, the benefit of re-embedding is highest for large QUBOs. This is shown in

the results from the embeddings for PYQ QUBOs in Fig. 4a and Fig. 4b, corresponding to

a small and large QUBO, respectively. In the case of the small QUBO, re-embedding found

smaller embeddings that resulted in a higher Psuccess, but any embedding solved the instance

as each resulted in a Psuccess that was greater than zero. For the case of the large QUBO, the

smallest embedding found through re-embedding also resulted in a higher Psuccess than larger

embeddings, but most larger embeddings resulted in a Psuccess of zero. Therefore, despite the

increasing cost of re-embedding with QUBO size, the largest QUBOs are the ones that most

benefit from re-embedding, as it may be required to solve problem instances.

Next, in Fig. 7, we show a comparison of post-processing methods on PYQ QUBOs only.

Here, we see that ME consistently recovers a higher number of valid schedules than MV does.

As shown where T = 9, ME can even recover valid schedules when MV often produces none.

Table ?? shows a broader comparison of post-processing methods for all embeddings used in this

work. Excluding the cases where neither post-processing method resulted in a positive Psuccess,

which often corresponds to the largest embeddings, ME resulted in a higher Psuccess 77% of the

time. For the majority of the remainder of the cases with a positive success rate, ME and MV

returned the same number of valid schedules. The percentage of cases in which MV outperformed

ME is less than 0.01%. Therefore, to maximize Psuccess on the JSP, ME should be used during

post-processing.

Finally, we evaluate the impacts of embedding size on an altered anneal schedule that

includes a pause. Figure 8 shows our results from a set of ten embeddings of a PYQ QUBO where
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Figure 7. Comparison post-processing methods

Figure 8. Effect of embedding size on pausing

ME is used during post-processing and is representative of results obtained for embeddings of

other instances. These results are consistent with those in [17, 25]; only within a narrow region

of s does pausing result in a higher Psuccess, and outside this region, Psuccess remains relatively

constant. In this figure, we see that Psuccess decreases as embedding size increases, which was

also observed in Fig. 4a. However, this figure also shows that the performance improvement

from pausing near the optimal pause location also decreases as embedding size increases. We

attribute this effect to the increased cost associated with flipping larger chains. That is, as the

number of qubits within a chain increases, changing the value of all chained qubits comes at

a higher energy cost. Thus, for embeddings with longer chains, thermal relaxation will not be

as effective as it is for shorter chains. Lastly, we see that while embedding size affects Psuccess,

it does not significantly affect the optimal pause location. In summary, we see that in order to

maximize performance when pausing near the optimal pause location, embedding size should be

minimized.
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3.3. Discussion

As previously mentioned in the introduction to this paper, two major challenges need to be

addressed to improve QA performance. Our evaluation shows how the four methods in Section 2

can address these challenges and further improve QA performance. We address the first chal-

lenge through an efficient problem formulation — which we represent with the PYQ tool — and

through variable pruning. Our results show the impacts of this through smaller QUBOs, smaller

embedding sizes, and reduced embedding failure rates. While the second challenge is also ad-

dressed through our variable reduction techniques, we primarily use re-embedding to find smaller

embeddings that result in higher performance. The necessity of this step is shown in Fig. 4b,

where the embeddings that are most likely to be found by the embedding algorithm are unable to

solve the JSP instance. Despite performing both variable reduction and re-embedding, Psuccess

can still be low for larger QUBOs. We show that this can be remedied through proper selection

of a post-processing method and insertion of a pause near the optimal pause location in an an-

neal schedule. However, to make the most of pausing, our results show that re-embedding needs

to be performed to find smaller embeddings with relatively short chains, since the performance

benefits from pausing decrease as chain length increases. Lastly, our results show that while em-

bedding size affects the performance improvement from pausing, it does not significantly change

the optimal pause location. In summary, to achieve the highest performance with QA, all the

considered methods must be performed together.

4. Related Work

One of the first steps in QA is problem formulation. While this is a problem dependent step,

Lucas [23] provides Ising formulations of many NP-hard problems and shows that some share

fundamental components. One of the major considerations in this step is the number of variables

used, as these are represented by qubits on the QPU, which are highly limited in number. The

desire to minimize the number of variables can be clearly seen in the work presented by Venturelli

et al. [36] through the use of variable pruning methods. However, even when using this method,

only relatively small problems are able to be solved. Stollenwerk et al. [32] show effects of tunable

resolution in discretization of a variable. Fine resolution results in high quality solutions, but

comes at the cost of an increased number of variables. Conversely, a lower resolution can reduce

the number of variables required, but results in lower quality solutions.

In order to enable solving large scale problems with current QA hardware, various hybrid

quantum-classical methods have been proposed. These range from methods that partition and

modify problems over many anneals to strategies for decomposing problems into subproblems

to be solved by classical and quantum computers. Karimi and Rosenberg [19] present a method

to iteratively set the values of variables that nearly always take the same value across many

annealing runs. Through the use of this method, the authors note that not only does problem

size decrease, but success rate increases, and outperforms QA when the method is not used.

Another iterative method that targets problems too large to be fully embedded on the QPU is

given by Rosenberg et al. [30]. In this method, a large problem is solved by iteratively setting

variables, and solving the remaining subproblem. In contrast to these iterative methods are

hybrid methods that employ both classical and quantum computers to solve subproblems of a

decomposed problem. Such a method is presented by Tran et al. in [35], in which a battery

capacity constraint for a Mars lander is offloaded to classical computers. A similar work applies

this method to multiple scheduling problems, and provides the decomposition for each [34]. Yet
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another hybrid quantum-classical method is to use classical computation resources as search

managers for problems. In this method, a binary search tree is constructed for a QUBO, and is

then used to direct the search based on results from the annealer by setting the values of certain

variables. Not only does setting variable values make use of previous results, but it also provides

means to reduce problem size. This method can be found in many works [34–36]. Similar to the

methods in our work, hybrid methods can successfully reduce problem and embedding size, and

improve performance. Additionally, hybrid quantum-classical methods can also enable guided

searches of the solution space. Therefore, development of hybrid quantum-classical methods is

a promising area of research for QA.

Another step required by QA that also has an effect on the size of the problem submitted

to the QPU, is embedding. While embedding does not influence the size of the original problem,

it does determine the size of the embedded problem, which is what will be solved on the QPU.

Thus, embedding algorithms that result in small embeddings are of great interest. Currently,

the embedding tool developed by D-Wave, minorminer, is commonly used [7]. This method

employs a heuristic, resulting in embeddings of different sizes being found for the same QUBO.

However, embedding size is not the only metric by which embedding algorithms are judged;

two other metrics of interest are the time required to generate an embedding, and the resulting

performance of annealing with a specific embedding. Therefore, embedding algorithms that can

improve any of these three metrics are useful.

Pudenz et al. [27] show that as chain length increases, performance decreases. This implies

that two of the metrics for embedding, embedding size and performance, may be related. How-

ever, using chain length alone to measure embedding size may be misleading, as shortening one

chain may result in lengthening other chains. Abbott et al. [1] show that embedding time can

eliminate any computational speedup resulting from using QA. While they do not present a

new embedding algorithm, they note that for their type of problem, the dynamically weighted

maximum-weight independent set problem, the embedding cost for any number of weight con-

figurations of a graph can be reduced to the embedding cost for one configuration by reusing

the embedding with altered weights. One embedding algorithm that is able to improve all three

metrics, by considering the structure of the QPU, is presented by Date et al. [11]. However, their

algorithm assumes the working graph of the QPU has a 100% yield, that is, no qubits on the

QPU are turned off. Furthermore, the algorithm only applies to Chimera architecture QPUs,

and will not apply to Pegasus architecture QPUs. In [37], Yarkoni et al. note that a parameter

related to embedding, chain strength, has a strong effect on performance. These works show

that the embedding process can have a significant impact on the performance of QA and affect

the computational speedup obtained from using QA. These results also show that there is room

for improvement in current embedding methods.

Another way of improving performance of QA is through the use of anneal controls. However,

as they are only available on the latest Chimera architecture QPU, research implementing them

is relatively limited. Lanting et al. [22] present one of the first works using anneal controls to

improve performance by applying non-uniform driver Hamiltonians, through the use of anneal

offsets, to mitigate perturbative anticrossings. Marshall et al. [25] explore the use of anneal

pausing and reverse annealing, and are able to improve performance by orders of magnitude.

Izquierdo et al. [17] extend this work to include embedded problems, and study the effect of

chain strength. In [38], Ikeda et al. perform forward annealing, and use the results as input to

reverse annealing. They show that reverse annealing can improve performance, and that selecting

the lowest energy configurations from forward annealing results in higher performance than

randomly selecting a configuration. However, they only explore limited schedule configurations
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for reversed annealing. In these works, it is clear that anneal controls have a large configuration

space, and an exhaustive search would be costly in terms of QPU access time. Yarkoni et al. [38]

address this by proposing and successfully implementing an evolutionary algorithm to tune

anneal offsets on a per-qubit basis. Overall, these works show that annealing controls enable

performance improvements, yet finding the optimal configuration is challenging.

Conclusions and Future Work

In this work, we evaluated QA on the JSP. We first converted each JSP instance to use

binary variables and determined a set of excess variables that could be pruned. We then used

two tools to create QUBOs of different sizes that each produced valid schedules for the original

JSP instance. Next, for each QUBO, we repeated the embedding process to find embeddings over

a large range of embedding sizes. We retrieved samples from the QPU using each embedding,

and applied two post-processing techniques to recover incomplete configurations. Finally, we

performed annealing a second time, using a modified annealing schedule containing a pause.

Our results show that for the JSP, QA performance is sensitive to problem formulation,

embedding, and post-processing. Furthermore, when studying the effects of anneal controls,

such as anneal schedule modifications, special care must be taken when preparing a problem

for annealing so as not to mask the effect of the control on performance. We have shown that

embedding size can have a significant impact on performance, and that the embeddings that

are most commonly found by embedding tools do not result in the highest performance. We

then proposed re-embedding as a method to improve Psuccess. While re-embedding introduces

a time-performance trade-off, we showed that it can be necessary for solving larger instances.

We have also shown that the size of a QUBO affects the sizes of embeddings found, and con-

sequently, QUBO size also impacts performance. Thus, minimization of QUBO size through an

efficient formulation and variable pruning techniques are critical to high performance. We then

showed that a higher number of valid schedules can be found through use of a post-processing

method that considers the penalties associated with different qubit values. Finally, we showed

that pausing can improve Psuccess, yet the magnitude of improvement lowers as embedding size

increases, due to the increased energy cost associated with changing the state of an entire qubit

chain. In summary, we have shown that due to the sequential nature of and the interplay be-

tween the steps used to solve the JSP, they must be considered together in order to achieve high

performance. Furthermore, as these steps are not specific to the JSP, they can be applied to

other embedded problems to improve performance.

Some main limitations of the current QA hardware are the low number of qubits and low

connectivity between qubits. While Pegasus architecture QPUs [5] will increase both the num-

ber of qubits and qubit connectivity, embedded problems may still be challenging, as they

often require numerous variables due to one-hot encoding of integer variables. We expect that

quantum-classical hybrid methods, such as those of the related work, will become increasingly

important, as they can decompose problems so that fewer resources are required for solving. Ad-

ditionally, as many problems require variable chaining, embedding algorithms that find smaller,

higher performing embeddings, in less time than current methods, will also be of interest for QA.

Lastly, since anneal schedule modifications can significantly improve QA performance, yet many

real-world applications will require embedding, which as we have shown limits the effectiveness

of anneal schedule modifications, additional work is required to determine which modifications

result in the highest performance.
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