
Computational Approaches to Identify a Hidden

Pharmacological Potential in Large Chemical Libraries

Dmitry S. Druzhilovskiy1 , Leonid A. Stolbov1 , Polina I. Savosina1 ,

Pavel V. Pogodin1 , Dmitry A. Filimonov1 ,

Alexander V. Veselovsky1 , Karen Stefanisko2 , Nadya I. Tarasova2 ,

Marc C. Nicklaus3 , Vladimir V. Poroikov1

c© The Authors 2020. This paper is published with open access at SuperFri.org

To improve the discovery of more effective and less toxic pharmaceutical agents, large virtual

repositories of synthesizable molecules have been generated to increase the explored chemical-

pharmacological space diversity. Such libraries include billions of structural formulae of drug-

like molecules associated with data on synthetic schemes, required building blocks, estimated

physical-chemical parameters, etc. Clearly, such repositories are “Big Data”. Thus, to identify the

most promising compounds with the required pharmacological properties (hits) among billions

of available opportunities, special computational methods are necessary. We have proposed using

a combined computational approach, which combines structural similarity assessment, machine

learning, and molecular modeling. Our approach has been validated in a project aimed at finding

new pharmaceutical agents against HIV/AIDS and associated comorbidities from the Synthetically

Accessible Virtual Inventory (SAVI), a 1.75 billion compound database. Potential inhibitors of

HIV-1 protease and reverse transcriptase and agonists of toll-like receptors and STING, affecting

innate immunity, were computationally identified. The activity of the three synthesized compounds

has been confirmed in a cell-based assay. These compounds belong to the chemical classes, in which

the agonistic effect on TLR 7/8 had not been previously shown. Synthesis and biological testing of

several dozens of compounds with predicted antiretroviral activity are currently taking place at the

NCI/NIH. We also carried out virtual screening among one billion substances to find compounds

potentially possessing anti-SARS-CoV-2 activity. The selected hits’ information has been accepted

by the European Initiative “JEDI Grand Challenge against COVID-19” for synthesis and further

biological evaluation. The possibilities and limitations of the approach are discussed.

Keywords: drug discovery, chemical-pharmacological space, big data analysis, similarity as-

sessment, machine learning, molecular modeling, virtual screening, HIV/AIDS, SAVI, COVID-19.

Introduction

Discovery of new pharmaceutical agents is an unabated task of biomedical science because

(a) there are no effective and safe drugs against many human diseases; (b) many existing drugs

have a narrow therapeutic window due to severe side effects and toxicity; (c) application of drugs

can lead to acquired resistance; (d) idiosyncratic and adverse effects restrict the use of specific

therapies in particular patients [70].

The number of launched pharmaceutical substances is estimated at 15,000 worldwide, with

several dozen new medicines approved every year [51]. About a million biologically active sub-

stances are under active study, but many belong to the same chemical series [14]. To increase

the chemical-biological diversity of the investigated substances, in addition to the millions of

already synthesized drug-like compounds [2, 11], a number of attempts to generate virtual li-

braries of the so-called “synthesizable molecules” have been carried out in recent years ( [57, 59]
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and some others). Such repositories of enumerated molecules include over billion structural for-

mulae of products jointly with data on the possible synthetic routes, building blocks, estimated

physical-chemical properties, cost of preparation, etc. The massive number of different chemical

data offered by those libraries allows one to categorize them as “Big Data”. Since the number of

known pharmacological targets is several thousand, the possible chemical-biological space’s di-

mensionality achieves about ten to the thirteenth power. Exploring such volumes of data requires

developing particular computational methods, allowing to operate (store, retrieve and analyze)

over all this structural information for identification of potential pharmacological agents with

the required biological activity profiles.

We have developed an approach for analyzing large chemical databases and selecting promis-

ing substances based on the combined application of structural similarity assessment, analysis

of the structure-activity relationships using machine learning, and molecular docking. This tech-

nology has been validated in our project dedicated to finding new biologically active compounds

against HIV/AIDS and associated comorbidities in the Synthetically Accessible Virtual Inven-

tory (SAVI) [59]. We showed that its application allows detecting the already known antiretro-

viral agents, which were found by overlap analysis of SAVI with PubChem [55]. This technology

allowed us to select from SAVI some potential HIV-1 proteins inhibitors and TLR-7, TLR-8,

and STING agonists, which affect the innate immunity. Activity of three predicted Toll-like

receptor agonists that were synthesized has been experimentally confirmed; as of this writing,

the NCI/NIH carries out synthesis and biological evaluation of the several dozens of other com-

pounds.

The developed technology could be widely used to search for new pharmacological sub-

stances. In particular, in the context of the SARS-CoV-2/COVID-19 pandemic, we have con-

ducted virtual screening of more than one billion accessible substances as part of the Joint

European Disruptive Initiative (JEDI) Grand Challenge against COVID-19 to find compounds

potentially possessing anticoronavirus activity [33]. Based on the prediction results, we selected

potential inhibitors of SARS-CoV-2 proteins, including the main protease 3CLpro, papain-like

protease PLpro, RNA dependent RNA polymerase RdRp, and human serine protease, TM-

PRSS2, which is involved in virus-host interaction. Information about the selected compounds

was passed on to the organizers of the JEDI Grand Challenge. We were included in the top 20 out

of 130 participating groups; consequently, compounds proposed by our team were selected for

the synthesis and biological activity evaluation.

Our approach for in silico analysis of big chemical-pharmacological space and its practical

validation is described below.

In section 1, we present the general workow that includes: (1) a storage system for a large

library of chemical compounds; (2) procedure for creating the training sets for PASS based on

publicly and commercially available databases on biologically active compounds and grouping

the ligands according to different binding modes identified by supercomputer docking; and (3)

selection of the most promising compounds with desirable biological activity (hits) by com-

bining similarity assessment, machine learning, and docking. Section 2 describes our similarity

assessment approach based on the original descriptors, which reect the essential structural and

physical features of the ligand-target interactions providing the truthful structure-activity re-

lationships analysis for heterogeneous datasets. Section 3 provides a machine learning method

to elucidate the structure-activity relationships by analyzing the training sets, including the

information about known biologically active compounds. Molecular docking as a method for
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verication of selected hits, to predict the binding poses and estimate the anity we described in

Section 4. Section 5 presents the technical realization of data analysis, including the storage

and processing systems of big data, software, and virtual environments involved in the study. In

section 6, we report the in silico selection of new potential anti-HIV agents and innate immunity

inducers with the experimental validation of our findings. Our attempt to identify novel antiviral

agents, which could be investigated as potential medicines for SARS-CoV-2/COVID-19 therapy,

is described in section 7. In the Conclusions section, we summarize the results of the study and

point directions for further investigations.

1. General Workflow of the Approach

The general workflow of the proposed approach is presented in Fig. 1. The critical part of the

process is computer program PASS (Prediction of Activity Spectra for Substances) [24], PASS

currently predicts several thousand biological activities based on the analysis of a training set

that includes over one million known biologically active compounds. To keep up with the state

of biomedical and pharmaceutical science, we regularly update the training set, extracting new

information about pharmaceutical agents from different databases, some public (ChEMBL [10],

PubChem [55], etc.), others commercial (Clarivate Analytics CDDI [14], etc.). The training

procedure includes leave-one-out cross-validation, which provides accuracy estimates for the ob-

tained structure-activity relationships (SAR). To estimate the predictivity of those SAR models,

20-fold cross-validation is performed. In the standard version of PASS, both average accuracy

and predictivity exceed 95%. The prediction’s reliability can be improved by docking of ligands

into a particular binding pocket and selecting best scoring compounds for the training set. It is

particularly effective for protein targets with extended or multiple pockets as it allows selecting

compounds binding to the same site of the protein.

Figure 1. General workflow of the large database analysis for identification of potential phar-

macological substances

To select the most promising molecules in large virtual databases of synthesizable compounds

(e.g., SAVI [59]) for synthesis and biological testing, three sequential in silico methods were

applied. The work with the large volumes of data (see a more detailed description of SAVI in

section 5) requires using cloud computing infrastructure for data storage and processing.
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It should be emphasized that our task was not only to select molecules that have the desired

types of biological activity, but also to enrich the initial SAVI library with new knowledge on

structure-activity relationships, which increased the actual disk space requirements. In order to

improve the quality of the storage environment for chemical information, an HP 3PAR hard-

ware storage system was used. Using a fully connected full-mesh all-active cluster architecture,

HP 3PAR provided stable performance in cases of load increase to the disk array and even load

of array controllers. This solution allows simultaneous processing of data and metadata, and the

use of SAS 15K drives made it possible to significantly speed up access to data stored with good

performance.

Applying algorithms for biological activity prediction often requires filtering out of com-

pounds from the general data set by appropriate threshold for molecular weight, amount of

hydrogen donors/acceptors, stereochemistry, etc. in order to reduce the computational time for

molecular modeling. Studying 3D structures of protein-ligand complexes of known ligands with

the biological targets in question can suggest preliminary hypotheses about structural charac-

teristics of the desired molecules. Such filtering approaches may significantly reduce the number

of substances under study at the initial stage, but require the use of data indexing in order

to increase the speed of selecting the lead compounds from billions of molecules with tens of

billions of data items. Therefore, application of high-performance server solutions with parallel

computing systems and SQL infrastructure deployed on them is necessary (see the description

of technical realization in section 5).

We applied three methods to identify hits with the required biological activity: structural

similarity assessment, prediction of biological activity with machine learning methods, and dock-

ing. The docking procedure requires significant computational resources; thus, at the first and

the second stages of analysis, we used similarity assessment and machine learning to reduce the

number of compounds that had to be analyzed by molecular modeling. The advantages and

limitations of the methods are described in more detail below.

2. Similarity Assessment

“Similar molecules exert similar biological activities” [36]. Despite the occasionally observed

violation of this rule in the case of so-called activity cliffs [17], it is widely used in medicinal

chemistry to study the analogs of already known pharmaceutical agents having their pharma-

cological effect/biological target in mind [76]. Moreover, it is the “method-of-the-choice” in the

case of novel pharmacological targets having a tiny number of known ligands to generate the

(Q)SAR model.

There is no universal method for assessing the similarity between molecules belonging to

different chemical classes and having various biological activities [6, 63]. In this study, we develop

the method for similarity estimation based on our descriptors named Multilevel Neighborhoods

of Atoms (MNA) [22] and Quantitative Neighborhoods of Atoms (QNA) [25]. These descrip-

tors reflect the essential structural and physical features of the ligand-target interactions, as

confirmed in many successful cases of structure-activity relationships analysis in heterogeneous

datasets [51]. MNA and QNA descriptors differ from most other descriptors [71] because they

are presented as unordered sets; in the case of MNA as character strings, i.e. linear notations

of atoms with their neighborhoods; in the case of QNA as pairs of real numbers, P and Q,

for each atom of the molecule. P and Q are calculated based on the connectivity matrix and
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the standard values of the ionization potential and electron affinity of atoms in a molecule as

described earlier [25].

For MNA descriptors, the well-known measure of similarity of two discrete sets:

T (A,B) =
n(A ∩B)

n(A ∪B)
≡ n(A ∩B)

n(A) + n(B)− n(A ∩B)
, (1)

may be used where n(A ∩ B) is the number of MNA descriptors at the intersection of the sets

of descriptors of molecules A and B; n(A∪B) equivalently in their union. T (A,B) is a Jaccard

measure proposed in 1901 [32] and also known as Tanimoto’s similarity measure [69].

The peculiarities of QNA descriptors (each structure is described as the set of tuples having

mutually dependent members) do not allow the straightforward use of the conventional similarity

measures. Therefore, to assess similarity based on QNA descriptors, it is necessary to use other

approaches to evaluate the similarity between complex chemical systems, e.g., those proposed

by Todeschini [43]. To calculate the similarity of sets by Todeschini, the maximum similarity of

each element of the set with elements of another set is used. The maximum contributions of all

set elements are summed and then averaged over the total number of elements in both sets.

We propose an estimate F (A,B) of the similarity of molecular structures by QNA descrip-

tors, using the Todeschini approach and Tanimoto’s similarity measure, defined as:

F (A,B) =
n(A ∩B)

n(A) + n(B)− n(A ∩B)
, (2)

where n(A) = NA and n(B) = NB is the number of pairs P and Q of the QNA descriptors of

molecules A and B, respectively, n(A ∩B) is calculated as:

n(A ∩B) =
1

2
(
∑

A

max
b∈B

[sab] +
∑

B

max
a∈A

[sba]), (3)

sab = Exp(−12NB((Pa − Pb)
2 + (Qa −Qb)

2), (4)

sba = Exp(−12NA((Pa − Pb)
2 + (Qa −Qb)

2), (5)

where sab and sba are the pairwise similarity of the QNA descriptor of atom a of molecule A

and the QNA descriptor of atom b of molecule B, Pa and Qa are the QNA descriptor of atom a

in molecule A, Pb and Qb are the QNA descriptor of atom b in molecule B. The multipliers

12NB and 12NA in the exponent have been chosen empirically. The proposed estimates of the

similarity of the structures of drug-like compounds A and B based on our QNA descriptors are

entirely new and do not have analogs.

To obtain quantitative estimates of biological activity for compounds based on these simi-

larity estimates, we used the K nearest neighbor method, kNN, with weighting by the values of

the similarity coefficients T (A,B) (1) and F (A,B) (2) according to the equations:

ÊT (A) =

∑
B T (A,B)E(B)∑

B T (A,B)
, ÊF (A) =

∑
B F (A,B)E(B)∑

B F (A,B)
, (6)

where ÊT (A) and ÊF (A) are the estimates of the biological activity of molecule A according to

the amounts of known biological activity E(B) of molecule B, the summation is on the K nearest

neighbors (maximum values of similarity), i.e. the set of molecules B, of the molecule A.

We had investigated the applicability of the proposed approach to the assessment of activity

by similarity for 16,770 inhibitors of HIV-1 protease, reverse transcriptase, and integrase [66].
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For all three targets, using both MNA and QNA descriptors, the best values of the mean square

deviation (RSMD) and the coefficient of determination of the prediction (Q2) were obtained for

the five nearest neighbors, 5NN.

Table 1. Values of Q2 based on similarity estimates by MNA and

QNA descriptors at 5NN

Target Number of structures Q2, MNA Q2, QNA

HIV-1 integrase 4072 0.7895 0.7946

HIV-1 protease 6390 0.8007 0.8052

HIV-1 protease 6308 0.6933 0.6980

The results obtained with the QNA descriptors outperformed those for the MNA descrip-

tors, which may be explained by the better correspondence of the QNA descriptors to molecular

recognition physics. The data presented in Tab. 1 are close to the performance of QSAR mod-

els, which were also analyzed [66]. However, our results demonstrated for the first time the

applicability of a similarity search using QNA and MNA descriptors as an effective method for

processing large databases.

3. Machine Learning Methods

In contrast to the biological activity prediction based on pairwise structural similarity, ma-

chine learning methods elucidate the structure-activity relationships by analysis of the training

sets, including the information about known biologically active compounds [12]. To develop the

(Q)SAR ((Quantitative) Structure-Activity Relationships) models, structures of the compounds

from the training set should be presented as molecular descriptors [71]. If biological activity is

described by quantitative values (IC50, EC50, LD50, etc.), regression QSAR models may be

created. If only qualitative data on activity is available (the compound is categorized as either

“active” or “inactive” categories), classification SAR models may be created. Best practices in

creating (Q)SAR models have been described in several publications (see, e.g. [16, 30, 72]); ex-

tensive analysis of different QSAR issues have been presented in a recent review [45]. Initially,

QSAR studies were performed with training sets of compounds active in one biological assay; in

most cases, all compounds belonged to the same chemical classes [45]. Nowadays, multi-target

(Q)SAR activity profiling of compounds is performed increasingly often. One of the first at-

tempts to predict many kinds of biological activity in silico based on structural formulae is the

computer program PASS (Prediction of Activity Spectra for Substances). A brief description of

PASS follows.

3.1. PASS Software

The development of PASS started in the late 1980s [9]. Its primary purpose was to de-

velop a computational method for selecting the most promising substances among the drug-like

compounds synthesized by different USSR institutions and to identify the most relevant phar-

macological assays for the selected compounds. Since the compounds submitted for the State

Registry [9] belonged to diverse chemical series and may have very different kinds of biological

activity, it was necessary to develop a method for prediction of broad biological activity profiles

based only on structural formulae. That is why our software has been described as: “One of the
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earliest and most widely used examples of data-mining target elucidation is the continuously

curated and expanded Prediction of Activity Spectra for Substances (PASS) software, which

was assimilated from the bioactivites of more than 270,000 compound-ligand pairs” [44]. PASS’s

current version predicts over five thousand biological activities based on the analysis of structure-

activity relationships for 1,025,468 biologically active compounds. It uses MNA descriptors [22]

and employs a modified naive Bayes classifier [26]. This method not only allows one to carry

out high-accuracy SAR analysis for compounds from the training set but also is robust enough

to provide reasonable estimates of the biological activity spectra of new compounds despite the

incompleteness of information in the training set [51].

For a submitted compound, PASS estimates two probabilities: Pa, the probability of belong-

ing to the subset of “actives”; and Pi, the probability of belonging to the subset of “inactives”.

By default, all compounds, for which PASS predicts Pa > Pi, are considered to be “actives”.

Both an Invariant Accuracy of Prediction (IAP) determined in leave-one-out cross-validation

and as well as the predictivity in 20-fold cross-validation (IAP20) exceed 0.96 averaged across

all predicted activities. The PASS performance supersedes those of other known methods for

predicting biological activity profiles, which has been shown in several benchmarking analyses [4,

28, 46].

The PASS Professional version allows creating new SAR bases, re-training the program to

obtain new knowledge, and validating the accuracy and predictivity using leave-one-out and

20-fold cross-validation. Using this version of the program, we created specialized SAR bases for

detecting potential anti-HIV agents in SAVI, which comprises inhibitors having similar binding

modes against the main HIV-1 targets. Those inhibitors were selected using docking conducted

with the ICM software [47] on the NIH Blue Gene supercomputer.

For this purpose, the protease and reverse transcriptase inhibitors, as well as STING, TLR7,

and TLR 8 receptor agonists from the ChEMBL [10], NIAID HIV/OI/TB [48] and Cortellis Drug

Discovery Intelligence [14] databases were selected. Classification models based on this data were

built using PASS as well as regression models with the GUSAR program (see below). We found

that the best predictions were achieved using classification models. This result may be explained

by the uneven distribution of the available data regarding quantitative characteristics of activity

(bias towards highly active compounds). In order to correct for this displacement, we evaluated

the spatial similarity of ligands based on docking for certain crystallized protein-ligand complexes

from the Protein Data Bank (PDB) [53]. We selected the following 3D complexes for docking:

for TLR7: 5GMH and 5ZSJ; for STING: 4LOH and 5BQX; for HIV-1 Reverse Transcriptase:

2ZD1, for HIV-1 Protease: 2R5P and 2O4P.

Table 2. Target-specific training sets based on docking

Target PDB code Number of

compounds before

docking

Number of

compounds after

docking

TLR7 5GMH and 5ZSJ 429 75

STING 4LOH and 5BQX 326 273

Reverse Transcriptase HIV-1 2ZD1 5877 4120

Protease HIV-1 2R5P and 2O4P 2054 1300
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Docking by ICM led to a significant decrease of the number of active molecules in the training

sets (Tab. 2), which in turn improved the IAP values estimated in 20-fold cross-validation to

0.99 for all training sets.

To analyze the biological potential of large chemical repositories in the billion-compound

size range, a special command-line version of PASS (PASS CL) was developed. PASS CL can

be applied in parallel to multiple sub-sets of the whole library to estimate biological activity

profiles, and then the obtained results are combined.

3.2. GUSAR

QSAR (Quantitative Structure-Activity Relationships) methods are appropriate to perform

further selection of compounds with the requested biological activity after utilization of similar-

ity assessment and PASS-based prediction. We used our software GUSAR (General Unrestricted

Structure-Activity Relationships) [78] for QSAR analyses based on the structural formulae of

the compounds and data about their biological activity/property, to predict activity/property

for new compounds. It can predict properties of organic compounds belonging to both homo-

geneous and heterogeneous chemical classes. The GUSAR program uses the QNA descriptors

that describe the molecule as a set of tuples composed of real values < P,Q > [25]. The P and

Q values are calculated for each atom in a molecule under examination using the connectivity

matrix and the standard values of the ionization potential and electron affinity of atoms in the

molecule. The current version of GUSAR also uses specific physicochemical descriptors and the

results of Pa-Pi prediction using the PASS algorithm for 3,663 types of activity and based on

a training set of over 300,000 biologically active organic compounds. The GUSAR algorithm is

based on the self-consistent regression (SCR) method [23]. In the current version of GUSAR,

this algorithm is used in combination with the nearest neighbors evaluation and a radial basis

function artificial neural network (RBF ANN) based on the SCR results to achieve a multiple-

model consensus [37, 79]. A comparative study of the first version of the GUSAR program and

CoMFA, CoMSIA, Golpe/GRID, HQSAR, and other widely used methods to construct QSAR

models demonstrated the advantages of our approach [25]. Recently, in the Collaborative Mod-

eling Project for Androgen Receptor Activity (CoMPARA), GUSAR estimations were shown to

be very good [41].

4. Molecular Modeling

Molecular docking is widely used in today’s virtual screening of new pharmaceutical

agents [39, 42, 67]. In contrast to similarity assessment and machine learning, docking requires

significantly more computational resources. Thus, we applied this method for the final verifi-

cation of the limited number (several hundred to several thousand) of selected hits, to predict

the binding poses and estimate the affinity (using the scoring function values). Docking was

performed using the programs Dock 6.5 [73] and AutoDock Vina [5]. The cutoff of the scoring

function for further selection of compounds was chosen as –65 kcal/mol and –8.0 kcal/mol for

Dock 6.5 and AutoDock Vina, respectively. The selected binding poses were manually inspected

for their ability to occupy accommodate the subpockets in the protein active sites and analyzed

the binding features (H-bonds, steric and electrostatic complementarity).

Virtual screening by docking was performed using ICM-Pro software (Molsoft Corp.) [1]. All

screens have been run as swamp job on NIH supercomputer Biowulf. Binding pockets have been
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defined using ICM pocket finder [21]. Screening of databases larger than 200000 compounds has

been performed in a fast mode with thoroughness = 1. Binding score cutoff for a particular

pocket was determined by docking a known ligand for this pocket and adding 5 units to the

determined score. 300–500 best scoring compounds were redocked in a thorough mode that tested

significantly higher number of poses and compound conformations. 30–40 best scoring hits from

the thorough screen were subjected to manual docking with pose evaluation. Compounds with

lowest scores have been synthesized and tested.

5. Technical Realization of the Big Chemical Data Analysis

The work with the large volumes of SAVI data required the use of cloud computing infras-

tructure for data storage and processing. Each unique compound is characterized by 62 descrip-

tors describing the initial reagents used (identifiers in the Enamine catalog, etc.), the possible

reaction (conditions, protection, expected yield, an estimate of the synthesis cost, etc.), and

chemical properties’ estimations seen as important for drug development (including “rule of

three”, “Lipinski’s rule of five”, n-octanol/water partition coefficient, the share of sp3-hybridized

carbon atoms, topological polar surface area, prediction of genotoxicity, etc.). Thus, the amount

of different records in the SAVI chemical library is more than ten billion, and the total amount

of SD files requires more than 12 terabytes of the disk array.

It should be emphasized that our task was not only to select molecules that have the de-

sired types of biological activity, but also to enrich the SAVI database with new knowledge on

structure-activity relationships, which to large extent increased the actual disk space require-

ments. In order to improve the performance of the environment for chemical information storage,

HP 3PAR hardware storage system was used. Using a fully connected full-mesh all-active cluster

architecture, HP 3PAR system provides stable performance in cases of load increase to the disk

array and even load of array controllers. This solution allows simultaneous processing of data

and metadata, and the use of the SAS 15K drives made it possible to significantly speed up

access to the stored data with good performance.

The application of algorithms for biological activity prediction often requires preliminary

selection of compounds from the general data set by some meaningful threshold value, such

as molecular weight, amount of hydrogen donors/acceptors, stereochemistry, and much more.

Studying the data about the interaction of already known chemical compounds with biological

targets are based on crystallography methods, preliminary hypotheses can be suggested about

the structural characteristics of the desired molecules. This approach can significantly reduce the

number of substances under study at the initial stage but requires the use of the data indexing

procedure to increase the speed of selecting the lead compounds. Therefore, the application

of high-performance server solutions with parallel computing systems and SQL infrastructure

deployed on them is necessary.

Cloud solutions from VMWare for server virtualization were used as a computing cluster

in IBMC. Hosts based on the 9th generation Hewlett-Packard Enterprise server line with Intel

Xeon E5-2600 v4 family processors with 216 cores were used as the physical component of the

cloud solution. Direct Fiber Channel switching with a total bandwidth of up to 64 Gbps was

deployed between the compute hosts involved in building the cloud SQL infrastructure and the

HP 3PAR storage system.

The SQL infrastructure based on the MySQL relational database management system was

deployed due to the need to use fields for the BLOB (Binary Large Object) data type as a
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container for the MOL format representation of structural formulae. The infrastructure binds

ten cloud-based SQL servers containing information structured according to the compounds

molecular weight and the types of transformations developed by Lhasa [38], which were used

to generate chemical structures. Such data arrangement reduces the load on the cloud solution

processing power by distributing the final SQL queries following the type of data. On the other

hand, it allows the users, taking into account the particular type of data, to work within one

server without affecting server utilization by the others.

At present, the approach we have applied allowed us in 24 hours to upload, standardize and

finalize the preliminary data for performing computer prediction within the framework of one

type of biological activity using more than one billion virtual molecules.

6. Identification of New Potential Anti-HIV Agents

by Analysis of SAVI

In 2014, the NCI/NIH Computer-Aided Drug Design (CADD) Group brought together a

team of researchers from both academy and industry to launch a project to create the SAVI (Syn-

thetically Accessible Virtual Inventory) library. SAVI is a vast virtual library of new molecules

predicted to be easily synthesizable and contains among other data, information on the synthetic

routes and the available reagents [49, 59, 60].

Its 2016 first complete file series contained over 283 million structures of new, easily syn-

thesizable organic molecules, meant for in silico screening for new pharmacological substances.

The current SAVI-2020 release has 1.75 billion generated products with reactions [60]. For this

release, 53 transforms were applied to approximately 150,000 building blocks in single-step re-

actions. A more detailed description of the SAVI project is presented in [49, 59, 60].

Our study aimed to identify substances in SAVI that could be potentially useful in treat-

ing HIV/AIDS and HIV-associated disorders based on the prediction of their interaction with

molecular targets. We had developed an algorithm for comparing large chemical databases based

on the representation of structural formulas in SMILES codes, and evaluated the possibility of

detecting new antiretroviral compounds in the SAVI database [61]. By analyzing the intersection

of the 283 million 2016 SAVI structures with 97 million structures of the PubChem database [55]

we found that only a small part of SAVI (0.015%) is represented in PubChem, which indicates a

significant novelty of this virtual library. On the other hand, among those structures, 632 com-

pounds that had been tested for anti-HIV activity were detected, and 41 had the desired activity.

A comparison of the structures of these active antiretroviral compounds with the database of

commercially available samples in the ZINC database [80] showed that most of these compounds

can be obtained from various suppliers. Thus, our studies validated SAVI as a promising source

for the search for new anti-HIV compounds [61].

We then analyzed more than 961 million unique structural formulae of drug-like compounds

in (an early version of) the SAVI-2020 library using the algorithm presented in Fig. 1. This

allowed us to select a number of potential HIV-1 protease inhibitors (53 compounds) and HIV-1

reverse transcriptase inhibitors (48 compounds), as well as TLR 7 receptor (53 compounds),

TLR 8 (1378 compounds), and STING (627 compounds) agonists from the SAVI library (TLR

and STING agonists affect the innate immunity).
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(a) Location of a SAVI molecule in the HIV-1

protease active center (colored according to

hydrophobic potential)

(b) Superposition of this molecule with the known

HIV-1 protease inhibitor Darunavir (magenta)

Figure 2. An example of a binding pose in the active site of HIV-1 protease

An example of a binding pose in the active site of HIV-1 protease of one

molecule selected as a hit with is shown in Fig. 2a. The molecule (SAVI ID =

9A6A69BA66D806BA 98763A2B6A65FDD7 1031) fits well in the active site.

The superposition of this molecule with well-known HIV-1 protease inhibitor Darunavir is

shown in Fig. 2b. Both structures are very similar (Tanimoto coefficient TC = 0.79).

Figure 3. Three potential TLR 7/8 agonists selected for experimental testing (on the left – the

structures of the products and their identifiers in SAVI; on the right – the starting reagents in

the Enamine database; the type of chemical reaction is indicated under the arrow)
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Chemical structures selected using our approach had been assessed at NCI/NIH to further

synthesis and biological evaluation.

Three potential toll-like receptor 7/8 agonists had been synthesized by Enamines [20] using

companys building blocks and synthesis reaction schemes presented in SAVI (Fig. 3).

Cell-based assay revealed that all synthesized compounds induced TLR-mediated activation

of NF-kB signaling (Fig. 4). Imiquimod was used as a positive control in the assay since it is a

potent TLR7 agonist. However, due to its high toxicity, only local use of this drug is allowed in

clinical practice.

Figure 4. Activation of NF-kB signaling by the tested compounds (structural formulae are given

in Fig. 3) in RAW-Blue reporter cells (reference drug – Imiquimod)

As can be appreciated from Fig. 4, the activity of the three potential agonists of toll-like

receptors has been confirmed experimentally. Remarkably, the scaffolds of identified compounds

have not been reported to function as TLR7/8 agonists before. Consequently, the finding ex-

pands the structural diversity of this important class of immune stimulants thus opening new

opportunities for discovery of drugs with better pharmacological profiles. It also demonstrates

the power of our ML approach that not just identifies close relatives of already known drugs as

is frequently the case but allows for accurate predictions of agonists with diverse structures.

Currently, NCI/NIH continues their studies dedicated to the synthesis and biological testing

of several dozen other molecules selected from SAVI using our approach as potential anti-HIV

agents.

7. Identification of New Potential Anti-SAR-CoV-2 Agents

In 2020, humanity encountered a new global threat, the pandemic of Corona Virus Dis-

ease 19 (COVID-19), an infectious disease caused by the SARS-CoV-2 virus. In response to this

challenge, many researchers worldwide rapidly initiated the search for medicines that could block

the virus interaction with the human organism and its infectivity [7]. We are participating in the

Joint European Disruptive Initiative (JEDI) “Grand Challenge against COVID-19” [33]. This

call’s principal terms & conditions require performing virtual screening by three independent

computational methods among more than one billion available compounds, including launched

drugs. Our former experience in computer-aided predictions with SAVI enabled us to find hits

with the required biological activities. We applied a similar approach to the JEDI Grand Chal-
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lenge as described above. We combined the data on structures from several databases, including

ZINC [80], SAVI [60], AMS [2], SWEETLEAD [68], Antiviral CAS dataset [3], IBS Natural

Compounds Set [31], and World Wide Approved Drugs [77]. After removing the duplicates,

structures that do not correspond to the current QSAR applicability criteria [27], and molecules

for which there is low chance of obtaining samples for experimental testing, we obtained a com-

bined database of 1,080 billion molecules. This database was used for virtual screening to identify

potential inhibitors of any of the targets listed below.

3-chymotrypsin-like protease (3CLpro/Mpro). The enzyme 3CLpro, also known as

Nsp5, is the main proteolytic enzyme of SAR-CoV-2, playing a major role in its lifecycle. There

are many 3D structures of this protease available in PDB [53]. At the beginning of the study

structure the structure 6LU7 with inhibitor N3 was only available and it was selected as a

target for the docking approach, since it contains the largest inhibitor, which is similar to the

natural substrate. In progress of study, the available spatial structures were downloaded from

the PDB and analyzed to determine the features participating in the binding of inhibitors. The

preparation of the protein structure was done using SYBYL 8.1 suite (Tripos Inc., St. Louis, MO)

and included: a) deletion of inhibitor, water, and cocrystallized ions; b) addition of hydrogens; c)

atomic charge calculation using the Gasteiger-Hückel method; structure optimization by energy

minimization in vacuum using the Tripos force field.

Papain-like proteinase (PLpro). PLpro is responsible for the cleavage of the N-terminus

of the replicase polyprotein to release Nsp1, Nsp2, and Nsp3. Its function is essential for virus

replication. The PDB structure 6WUU was selected as the target for molecular docking. The

preparation for docking was the same as for 3CLpro.

RNA-dependent RNA polymerase (RdRp). Nsp12, a conserved protein in coron-

avirus, is an RNA-dependent RNA polymerase (RdRp) and a vital enzyme of coronavirus repli-

cation/transcription complex. The PDB structure 7BV2 was used in investigation. The water,

Zn2+ ions, inhibitor and pyrophosphate were deleted. Partial atomic charges were calculated

using the Gasteiger-Hückel method; structure was optimized by energy minimization in vacuum

using the Tripos force field.

Human transmembrane peptidase serine 2 (TMPRSS2). TMPRSS2 cleaves the

SARS-CoV-2 spike protein, thus facilitating the infectivity of the virus. Unfortunately, no 3D

structure of this protein is currently available. To perform a similarity search and selection of

hits with the required biological activity from 1+ billion molecules, we identified the “reference

substances” (the most active inhibitors of the four studied targets known in June 2020), used

as queries. The following reference substances were used:

3CLpro. The five most active compounds were collected from different sources and tested

under different experimental protocols. GC376, Tideglusib, 11b, TZDZ-8 activities were taken

from the corresponding original publications [15, 34, 40]. MAT-POS-916a2c5a-1 was selected

from the PostEra resource [52]. All of the five compounds were tested using SARS-CoV-2 re-

combinant main protease and showed low micromolar activities.

PLpro. 6-thioguanine, GRL0617, 679818, Psoralidin were taken from the corresponding

original publications [13, 29, 35, 56] as most active inhibitors of SARS-CoV Papain-like protease.

RdRp. The selection of the most active compounds was carried out in the Stanford

Coronavirus Antiviral Research Database [65]. Three chemical compounds were selected,

their IDs in widely used databases, and common names are PubChem CID: 44468216 (GS-

441524), PubChem CID: 121304016 (Remdesivir), ChEMBL ID: CHEMBL2178720 (Beta-D-
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N4-Hydroxycytidine). The activity of GS-441524 and Remdesivir was reported in several

preprints [8, 19, 54, 62, 75]. The data on the activity of the Beta-D-N4-Hydroxycytidine orig-

inates from a single preprint [62]. All three compounds demonstrated submicromolar activity

(EC50) in the tests conducted using SARS-COV-2 and human cell lines to measure antiviral

activity. The ability of Remdesivir and GS-441524 to suppress the expression of viral RNA was

also studied in addition to the general antiviral effect, and compounds achieved submicromolar

EC50 values.

TMPRSS2. The selection of the most active compounds was carried out in the ChEMBL

database [10]. Three chemical compounds having submicromolar Ki values were found:

CHEMBL1809250, CHEMBL1229259, and CHEMBL1809251. According to the assay descrip-

tion from ChEMBL, compounds were tested against the recombinant catalytic domain of TM-

PRSS2 expressed in Escherichia coli using D-cyclohexylalanine-Pro-Arg-AMC as substrate by

fluorescence plate reader analysis. Results were published in the paper [64]. Based on the as-

sessment of MNA and QNA similarity for the reference molecules described above, we selected

42,509 hits, including 12,230 potential 3CLpro inhibitors; 25,812 potential PLpro inhibitors;

3,584 potential RdRp inhibitors; and 883 potential TMPRSS2 inhibitors (Fig. 5).

Figure 5. General workflow and results of selection of anti-SARS-CoV-2 hits

Further selection was performed based on PASS predictions. As a result, we selected

7,148 potential 3CLpro inhibitors; 25,782 potential PLpro inhibitors; 3,544 potential RdRp

inhibitors; and 882 potential TMPRSS2 inhibitors.

For TMPRSS2, the spatial structure is not available. Also, for the TMPRSS2 inhibitors, we

could not create both regression and classification models by GUSAR. Thus, this step of the

selection was the final step.

Finally, the following potential inhibitors of SARS-CoV-2 proteins were selected: 45 against

the main protease 3CLpro, 38 against the papain-like protease PLpro, 3,387 against RNA depen-

dent RNA polymerase RdRp; 882 as potential inhibitors of the human serine protease TMPRSS2.

Information about the selected compounds was passed on to the organizers of the JEDI

Grand Challenge. After expert evaluation, our results were included in the shortlist of 20 out of

130 groups. Thus, compounds selected using our pipeline will be experimentally investigated [18].
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Conclusions

We have proposed an approach for the identification of potential pharmacological substances

in very large databases of a billion or more drug-like compounds. The general workflow consists

of three stages:

1. Chemical similarity assessment.

2. Prediction of biological activity using machine learning methods.

3. Visual inspection of the binding poses, and estimation of the scoring function using molecular

docking.

This approach has been validated in two case studies: (1) identification of compounds poten-

tially inhibiting HIV-1 protease and reverse transcriptase, or being agonists of TLR and STING,

which induce the innate immunity, by virtual screening of SAVI; (2) detection of potential anti-

SARS-CoV-2 agents by virtual screening of over one billion molecules collected from different

available libraries in the context of the JEDI Grand Challenge project against COVID-19.

Synthesis of some selected molecules is currently being performed; these compounds will be

evaluated in the appropriate biological assays at NCI/NIH. Three selected TLR 7/8 agonists have

already synthesized and tested; experimental results confirmed the computational predictions.

These validations of our approach demonstrates its applicability to the analysis of large

databases that significantly extend the available chemical-biological space and opens new op-

portunities to discover more potent and less toxic pharmaceutical agents.
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64. Sielaff, F., Böttcher-Friebertshäuser, E., Meyer, D., et al.: Development of substrate ana-

logue inhibitors for the human airway trypsin-like protease HAT. Bioorganic & Medicinal

Chemistry Letters 21(16), 4860–4864 (2011), DOI: 10.1016/j.bmcl.2011.06.033

D.S. Druzhilovskiy, L.A. Stolbov, P.I. Savosina, P.V. Pogodin, D.A. Filimonov...

2020, Vol. 7, No. 3 75

https://doi.org/10.26434/chemrxiv.12185559.v1
https://doi.org/10.1021/ci000383k
https://doi.org/10.1134/S1990750820030117
https://postera.ai/covid/activity_data
https://www.rcsb.org
https://doi.org/10.1101/2020.04.27.064279
https://pubchem.ncbi.nlm.nih.gov
https://doi.org/10.1073/pnas.0805240105
https://enamine.net/library-synthesis/real-compounds/real-database
https://enamine.net/library-synthesis/real-compounds/real-database
https://doi.org/10.1101/2020.04.16.044016
https://cactus.nci.nih.gov/download/savi_download/
https://cactus.nci.nih.gov/download/savi_download/
https://doi.org/10.35115/37N9-5738
https://doi.org/10.18097/PBMC20196502073
https://doi.org/10.1101/2020.03.19.997890
https://doi.org/10.1016/s1359-6446(02)02411-x
https://doi.org/10.1016/j.bmcl.2011.06.033


65. Stanford Coronavirus Antiviral Research Database. https://covdb.stanford.edu, ac-

cessed: 2020-09-21

66. Stolbov, L., Druzhilovskiy, D., Filimonov, D., et al.: (Q)SAR models of HIV-1 proteins inhi-

bition by drug-like compounds. Molecules 25(1), 87 (2020), DOI: 10.3390/molecules25010087

67. Sulimov, A., Kutov, D., Sulimov, V.: Supercomputer docking. Supercomputing Frontiers

and Innovations 6(3), 25–50 (2019), DOI: 10.14529/jsfi190302

68. SWEETLEAD: A cheminformatics database of medicines, drugs, and herbal isolates. https:

//simtk.org/projects/sweetlead, accessed: 2020-09-21

69. Tanimoto, T.: An Elementary Mathematical theory of Classification and Prediction. Inter-

national Business Machines Corporation (1958)

70. Wermuth, C., Aldous, D., Raboisson, P., et al.: The Practice of Medicinal Chemistry. Fourth

edition. Academic Press 902 (2015), DOI: 10.1016/B978-0-12-374194-3.X0001-7

71. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH (2008),

DOI: 10.1002/9783527613106

72. Tropsha, A.: Best practices for QSAR model development, validation, and exploitation.

Molecular Informatics 29(6-7), 476–488 (2010), DOI: 10.1002/minf.201000061

73. UCSF Dock. http://dock.compbio.ucsf.edu, accessed: 2020-09-21

74. Vuong, W., Khan, M., Fischer, C., et al.: Feline coronavirus drug inhibits

the main protease of SARS-CoV-2 and blocks virus replication. bioRxiv (2020),

DOI: 10.1101/2020.05.03.073080

75. Wang, M., Cao, R., Zhang, et al.: Remdesivir and chloroquine effectively inhibit the re-

cently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 30(3), 269–271 (2020),

DOI: 10.1038/s41422-020-0282-0

76. Wermuth, C.: Similarity in drugs: reflections on analogue design. Drug Discovery Today

11(7–8), 348–354 (2006), DOI: 10.1016/j.drudis.2006.02.006

77. World Wide Approved Drugs (WWAD). http://www.way2drug.com/dr/ww_drug_

approved.php, accessed: 2020-09-21

78. Zakharov, A., Filimonov, D., Lagunin, A., Poroikov, V.: GUSAR (General Unrestricted

Structure-Activity Relationships) program package, Certificate of Russian State Patent

Agency, No. 2006613591 of 16.10.2006

79. Zakharov, A., Peach, M., Sitzmann, M., Nicklaus, M.: A new approach to radial basis

function approximation and its application to QSAR. Journal of Chemical Information and

Modeling 54(3), 713–719 (2014), DOI: 10.1021/ci400704f

80. ZINC library. https://zinc.docking.org, accessed: 2020-09-21

Computational Approaches to Identify a Hidden Pharmacological Potential in Large...

76 Supercomputing Frontiers and Innovations

https://covdb.stanford.edu
https://doi.org/10.3390/molecules25010087
https://doi.org/10.14529/jsfi190302
https://simtk.org/projects/sweetlead
https://simtk.org/projects/sweetlead
https://doi.org/10.1016/B978-0-12-374194-3.X0001-7
https://doi.org/10.1002/9783527613106
https://doi.org/10.1002/minf.201000061
http://dock.compbio.ucsf.edu
https://doi.org/10.1101/2020.05.03.073080
https://doi.org/10.1038/s41422-020-0282-0
https://doi.org/10.1016/j.drudis.2006.02.006
http://www.way2drug.com/dr/ww_drug_approved.php
http://www.way2drug.com/dr/ww_drug_approved.php
https://doi.org/10.1021/ci400704f
https://zinc.docking.org

	D.S. Druzhilovskiy, L.A. Stolbov, P.I. Savosina, P.V. Pogodin, D.A. Filimonov, A.V. Veselovsky, K. Stefanisko, N.I. Tarasova, M.C. Nicklaus, V.V. Poroikov

