
Dawn: a High Level Domain-Specific Language Compiler

Toolchain for Weather and Climate Applications

Carlos Osuna1, Tobias Wicky1, Fabian Thuering1,2, Torsten Hoefler3,

Oliver Fuhrer1

c© The Authors 2020. This paper is published with open access at SuperFri.org

High-level programming languages that allow to express numerical methods and generate

efficient parallel implementations are of key importance for the productivity of domain-scientists.

The diversity and complexity of hardware architectures is imposing a huge challenge for large and

complex models that must be ported and maintained for multiple architectures combining various

parallel programming models. Several domain-specific languages (DSLs) have been developed to

address the portability problem, but they usually impose a parallel model for specific numeri-

cal methods and support optimizations for limited scope operators. Dawn provides a high-level

concise language for expressing numerical finite difference/volume methods using a sequential and

descriptive language. The sequential statements are transformed into an efficient target-dependent

parallel implementation by the Dawn compiler toolchain. We demonstrate our approach on the

dynamical solver of the COSMO model, achieving performance improvements and code size re-

duction of up to 2x and 5x, respectively.

Keywords: GPGPU computing, DSL, weather and climate, code optimization, compiler, per-

formance portability.

Introduction

High resolution weather and climate simulations are subject of an unprecedented scien-

tific interest due to the urgent need to reduce uncertainties of climate projections. Despite the

progress achieved in the last years, the uncertainties have remained large, and improvements in

the projections are crucial for designing and adopting efficient mitigation measures.

There is clear evidence in the literature that increasing resolution is one of the key factors

to reduce the uncertainty. The horizontal resolution of current state-of-the-art climate model

projects range between 50 km and 100 km. At these resolutions, several physical processes of key

importance, e.g. the formation and evolution of deep convection must be parametrized. However,

these processes can be explicitly resolved on the computational grid at horizontal resolutions

around one kilometer. Unfortunately, when employing explicit numerical solvers that need to

respect the Courant-Friedrichs-Lewy (CFL) condition, an increase of 2x in horizontal resolution

implies a factor 8x in computational cost. Since the resolution of climate models is constantly

improving [24], they will quickly become a major workload on supercomputers which requires

increased attention to their performance [25].

Although some of the most powerful supercomputers provide an extraordinary computa-

tional power, weather and climate models cannot take full advantage of these leadership class

systems. The end of Dennard’s scaling [7] has led to the adoption of many-core accelerators, hy-

bridization and diversity of supercomputers. Weather and climate models are complex numerical

codes that contain from hundred thousands to millions lines of codes, and the community is strug-

gling to migrate and maintain the models for multiple computing architectures. Due to the lack

of standard parallel programming models that can be used by compilers to parallelize models

1Federal Institute of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland
2NVIDIA, Berlin, Germany
3Department of Computer Science, ETH Zurich, Zurich, Switzerland

DOI: 10.14529/jsfi200205

2020, Vol. 7, No. 2 79

implemented with sequential programming languages like Fortran on any architecture, domain

scientists are forced to combine multiple pragma based models like OpenMP and OpenACC, in

addition to usage of distributed memory parallelization with MPI. The result is a mixture of

multiple compiler directives with redundant semantic and numerical algorithms, often combined

with attempts to customize data layouts for different architectures using preprocessor condi-

tionals. In an attempt to tackle the portability problem, numerous domain-specific languages

(DSLs) are being developed and used to port parts of weather and climate models. However, they

still require to specify parallel programming model semantics that is crucial to generate correct

parallel implementations and instruct the DSL compiler with necessary information to apply

key optimizations. This generates a significant amount of boilerplate and code redundancy and

impacts the scientific productivity of the model developer. The result are error-prone implemen-

tations where the user must be careful to avoid data races when new computations are inserted

into pre-existing templates. Even if the use of these DSLs is an important step towards providing

a solution that allows to retain a single source code, they have not significantly improved the

ease of use, safety in parallel programming and programmer productivity for domain scientists.

Additionally, the scope of computations covered by existing DSLs is very limited, since they

cannot deal with the analysis and optimizations of large numerical discretization algorithms

with complex data dependencies. We present Dawn, a DSL compiler toolchain that offers a de-

scriptive, high-level language for the domain of partial differential equation solvers using finite

difference or volume discretizations. The Dawn DSL language provides a parallel programming

language for weather applications with sequential semantics where the user does not have to con-

sider data dependencies. The highly descriptive language where optimization and parallelization

are abstracted significantly reduces the amount of necessary code to express the numerical al-

gorithms in a parallel architecture and consequently improves maintainability and productivity

of the domain scientist. In contrast to other high-level frameworks (e.g., PETSc or MATLAB),

the domain scientist retains full control over the discretizations and solvers employed.

The Dawn DSL compiler aims at porting full components, within the scope of the language.

This allows the toolchain to apply data locality optimizations across all the components of a

model. The authors are not aware of any other DSL or programming model that enables global

model optimizations with all the functionality required by the weather and climate domain.

We demonstrate the Dawn DSL compiler on the full dynamical core of the COSMO weather

and climate model [4]. The dynamical core of a weather and climate model solves the Navier-

Stokes equations of motion of the atmosphere and its discretization generates the most complex

computational patterns of a model. Our results show that it is feasible to port entire dynamical

cores to a high-level descriptive DSL obtaining more efficient implementations and maintainable

codes.

The contributions of this paper are as follows:

• We introduce Dawn, an open-source DSL compiler toolchain including front-end language

and a comprehensive set of optimizers and code generators.

• We propose a high-level intermediate representation to interoperate tools and DSL front

ends.

• We demonstrate the usability and performance of the Dawn DSL compiler on the dynam-

ical core of COSMO, a representative weather and climate code.

The document is organized as follows: Section 2 describes the language and main features

supported by the DSL for weather and climate models. Section 3 provides a comprehensive

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

80 Supercomputing Frontiers and Innovations

description of the dawn compiler and the algorithms of the different DSL compiler passes. Finally

Section 4 shows performance results for the dynamical core of COSMO and comparisons with

the operational model running on GPUs.

1. Related Work

Numerous DSLs for stencil computations have been developed and proposed in the last

decade in order to solve the performance portability problem. In the image processing field,

Halide [22] provides a language and an autotuning framework to find an optimized set of param-

eters and strategies. PolyMage [18] provides instead a performance model heuristic. However,

they lack in general functionality required for the specific domain of weather and climate, like 3D

domains and a special treatment of the vertical dimension. Kokkos [5] provides a performance

portable model for many core devices which has been demonstrated on the E3SM model [1]. The

programming model contains useful parallel loop constructs and data layout abstractions. The

CLAW DSL [3] is a Fortran based DSL for column based applications. It can apply a large set of

transformations and generate OpenACC or OpenMP codes. However, it is limited to single col-

umn type of computations, like physical parametrizations, and not suitable for dynamical cores.

STELLA [10] (and its successor GridTools) has been the first DSL running operationally for a

weather model in a GPU-based supercomputer. The DSL supports finite differences methods on

structured grids and is embedded in C++ using template metaprogramming. PSyclone [21] is

a Fortran based DSL for finite elements/volumes dynamical cores being demonstrated for the

NEMO ocean model and the LFric weather model. It relies on metadata provided together with

the main stencil operators, in order to apply transformations and optimizations like loop fusion.

Various tools and approaches such as Patus [2], Modesto [11], or Absinthe [12] tune low-level

stencil implementations and could be combined with a stencil DSL. However, all of the exist-

ing approaches known to the authors provide a language where the user has the responsibility

to declare the data dependencies via metadata, boilerplate of the language or need to resolve

explicitly the data dependencies by choosing the computations that are fused into the same

parallel component.

2. Abstractions for Weather and Climate

2.1. The Weather and Climate Domain

The domain we target are computational patterns of weather and climate models on struc-

tured grids where each grid cell can be addressed by an index triplet (i, j, k). We focus on

algorithmic motifs with direct addressing where a series of operators are applied to update grid

point values. Further, no explicit dependency of the operator on the horizontal positional indices

(i, j) is assumed (with the exception of boundary conditions). This domain contains discretiza-

tions of partial differential equations using finite difference or volume methods as well as physical

parametrizations. The main computational patterns resulting from these numerical discretiza-

tions are compact horizontal stencils in the horizontal plane and implicit solvers like tridiagonal

solve in the vertical dimension.

In the following sections we introduce the Dawn DSL frontend (GTClang) and an interme-

diate representation (IR) designed as a minimal set of orthogonal concepts that can be used to

represent these computational patterns with a high-level of abstraction.

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 81

2.2. GTClang Frontend

GTClang [20] is a DSL frontend that provides a high-level descriptive language for express-

ing finite difference/volume methods on structured grids. GTClang takes the view of a series of

computations at a single horizontal location (i, j). Unlike other approaches such as the STELLA

DSL [10], the language assumes a sequential model where all the data dependencies and data

hazards will be resolved by the toolchain when constructing a parallel implementation from

the sequential specification. The frontend language is embedded in C++ using the Clang com-

piler [15] to parse and analyze the C++ abstract syntax tree (AST). It provides a high level of

interoperability, allowing to escape the DSL language within the same translation unit.

Figure 1 shows the main language elements of the DSL for an horizontal stencil example,

while Fig. 2 shows how to execute the generated backend specific implementation from a C++

driver program.

1 globals {
2 double eddlat , eddlon ;
3 double r e a r t h = 6371.229 e3 ;
4 }
5 stencil function avg {
6 storage data ;
7 d i r e c t i o n d ;
8 Do {
9 r e turn (data [d+1] − data [d−1]) ∗ 0 . 5 ;

10 }
11 }
12 stencil function de l t a {
13 storage data ;
14 o f f s e t o f f ;
15 Do {
16 r e turn (data [o f f] − data) ;
17 }
18 }
19 stencil function l a p l a c i a n {
20 storage data ;
21 Do{
22 r e turn data [i +1] + data [i −1] +
23 data [j +1] + data [j −1] −
24 4 .0∗ data ;
25 }
26 }
27

28 stenci l hd smag {
29 // Input -Output fields

30 storage u , v ;
31

32 // Input fields

33 storage hdmaskvel ;
34 storage [j] c r l a t ;

35

36 // Temporaries

37 var T sqr s , S sqr uv ;
38

39 Do {
40 vertical region (k s t a r t , k end) {
41 var f r a c 1 dx = c r l a t ∗ eddlon ;
42 var f r a c 1 dy = edd lat / r e a r t h ;
43

44 var T s = de l t a (j −1, v) ∗ f r a c 1 dy −
45 de l t a (i −1, u) ∗ f r a c 1 dx ;
46 T sqr s = T s ∗ T s ;
47

48 var S uv = de l t a (j +1, u) ∗ f r a c 1 dy +
49 de l t a (i +1, v) ∗ f r a c 1 dx ;
50 S sqr uv = S uv ∗ S uv ;
51

52 var smag u = math : : s q r t ((avg (i +1,
T sqr s) +

53 avg (j −1, S sqr uv))) − hdmaskvel ;

54 smag u = math : : min (0 . 5 , math : : max(0 . 0 ,
smag u)) ;

55

56 var smag v = math : : s q r t ((avg (j +1,
T sqr s) +

57 avg (i −1, S sqr uv))) − hdmaskvel ;
58 smag v = math : : min (0 . 5 , math : : max(0 . 0 ,

smag v)) ;
59

60 u += smag u ∗ l a p l a c i a n (u) ;
61 v += smag v ∗ l a p l a c i a n (v) ;
62 }}}

Figure 1. Smagorinsky diffusion operator example implemented using the GTClang front-end

language. For simplicity some functions like delta, avg are omitted

The main language elements shown in the example are the following:

• stencil is the main computation concept that contains the declaration of all the input-

output (storage) and temporary (var) fields and the Do body with the sequence of stencil-

like computations.

• vertical region allows to specialize computations for different regions of the vertical di-

mension. Atmospheric codes require to specialize equations at the boundaries or at custom

regions of the vertical dimension. Since weather models do not need to specialize compu-

tations for regions of the horizontal plane, the semantic of this keyword is restricted to the

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

82 Supercomputing Frontiers and Innovations

1

2 // define a runtime domain as a triplet of

3 // sizes and halos on each direction/dimension

4 domain dom(128 ,128 ,80 , ha lo s {3 , 3 , 3 , 3 , 0 , 0}) ;
5

6 // declare all storages

7 metadata s t o r a g e i n f o (128 , 128 , 80) ;
8 storage u(s t o r a g e i n f o , ”u”) , v (s t o r a g e i n f o , ”v”) ;
9 //...

10

11 hd smag (domain , u , v , hdmaskvel , c r l a t) ;
12 hd smag . run () ;

Figure 2. Execution in a C++ program of the smagorinsky computation declared in Fig. 1

vertical dimension. k_start/k_end are builtin identifiers marking the vertical levels of the

top/bottom of the atmosphere.

• var declares a variable for a temporary computation. The dimensionality and type of

memory where the temporary field will be stored is derived by specific analysis passes

(Section 3.2.2).

• stencil function, allows to define numerical functions that can be used within the

vertical_region to increase readability of the numerical algorithm. They can be

parametrized with fields (line 20), grid-point offsets (line 14) and dimensions (line 7).

• storage[dim], declares fields of certain dimensionality (default is a 3D storage). The grid

dimensionality of var declarations is deduced by an analysis pass of the toolchain, while it

is explicitly for input-output storage fields.

• i,j,k are builtin identifiers for each of the cartesian dimensions.

• Neighbor grid point field access operator [], like u[i+1] allows to access fields at neigh-

boring grid points of the center of the stencil operation.

• global defines global scalar parameters, like model configuration variables, with a global

scope. They can be defined at compile time or runtime.

The language assumes an array-like notation, where a loop over the entire domain is im-

plicit and indices on dimensions are only used when accessing neighbor grid points. A GTClang

statement:

b = a[i+1]

would be equivalent to the explicit array notation

b[h:end -h] = a[h+1:end -h+1],

where h is the halo size.

The main drawback of the array notation is that for a parallel compiler is not trivial to

determine in general which statements can be fused in the same parallel region due to data

dependencies. Indeed not all the statements of Fig. 1 can be inserted in the same (i, j) parallel

region due to dependencies, e.g., between lines 53 and 46. Other languages or DSLs like GridTools

or Kokkos delegate the responsibility for splitting the computations into parallel regions that

should not contain data dependencies to the user.

Since GTClang does not expose these parallel concepts in its language, the numerical meth-

ods can be implemented in a sequential manner without considering data hazards or having to

split computations into different parallel region components. This increases safety and produc-

tivity of the scientific development compared to other programming models that expose parallel

constructs in their language.

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 83

stencil.py Python frontend

stencil.f90 Fortran frontend GridTools

Naive Debug

stencil_gen.cpp

stencil.cpp

Dawn Field Versioning

Stage Splitting

Interval Partition

Stage Sync

Temporary Scopep
a
ra

lle
l
IR

 B
u
ild

e
rs

o
p

ti
m

iz
e
rs

CUDA

co
d

e
 g

e
n
e
ra

to
rs

Clang AST

Clang
Compiler

AST
Analyzer

GTClang Frontend

H
IR

p
a
ra

ll
e
l
IR

Inlining

MultiStage splitting

Temporary
Merging

Stage
Reordering

Stage
Merging

Figure 3. Architecture design of the dawn compiler

2.3. The High-Level Intermediate Representation

The high-level intermediate representation (HIR) is a representation that captures all (and

only) the concepts required to express a high level language for weather and climate applica-

tions like the GTClang language presented in Section 2.2. The aim of the HIR is to provide a

standard, programming language agnostic representation that enables sharing and reusing tools

and optimizers such as Dawn across multiple frontend languages. Other DSLs and code-to-code

translators like Fortran-based DSLs [3, 17] with the ability to parse and generate an IR will be

able to transform the parsed code into HIR and use the Dawn compiler toolchain. The Dawn

implementation uses Google protocol buffers to provide a specification of the HIR and thus

communicates in a language-neutral manner between the DSL frontend and the DSL toolchain.

A comprehensive description of the HIR specification can be found in [19].

3. Compiler Structure

In this section, we will present the dawn [20] compiler structure and a description of all the

components from the HIR to the code generation. The different layers of the compiler toolchain,

including the GTClang front end, the standard interface HIR and the Dawn compiler, are shown

in Fig. 3.

3.1. The Dawn Parallel IR

The HIR represents the user specification of computations in a sequential form. In order to

be able to generate efficient parallel implementations from the HIR, we need to define a parallel

model and map the HIR computations into that parallel model.

The Dawn compiler uses a parallel model that consist of a pipeline of computations (Stages)

that are executed in parallel for the horizontal plane (i, j). MultiStages contains a list of Stages

that are sequentially executed for each horizontal plane. Finally each MultiStages is executed

over a vertical range. The vertical data dependencies in the user-specified computations deter-

mine the execution strategy of the vertical looping: forward, backward, or parallel. Multiple

stages are then fused within the same parallel kernel connected by temporary computations

stored in on-chip memory. The horizontal plane is tiled in order to fit the temporary compu-

tations into limited-size caches. However, stencil computations accessing data from grid cells of

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

84 Supercomputing Frontiers and Innovations

neighboring tiles will create data races in the case of horizontal data dependencies, since parallel

tile computations can not be synchronized in general. We construct a parallel model based on

redundant computations [10], where all intermediate computations are computed privately by

each tile.

In order to code-generate implementations that follow this parallel model, Dawn defines a

parallel IR that enriches the HIR with additional concepts such as Stages and MultiStages of

the parallel model. Different optimizer-passes are responsible for creating a valid parallel IR

representation from the HIR. The main data structure of the parallel IR is defined as a tree,

shown in Fig. 4.

Figure 4. Parallel IR data model tree. The operator [] denotes an array of nodes

Figure 5 shows the parallel IR representation of the smagorinsky example. Since the ex-

ample does not contain vertical dependencies, the organization of the HIR computations into

MultiStages and interval computations information is trivially computed.

1

2 −Computation :
3 −MultiStage :
4 −vertical loop strategy : p a r a l l e l
5 −IntervalComputation : [k s t a r t , k end]
6 −Stage :
7 var f r a c 1 dx = c r l a t ∗ eddlon ;
8 var f r a c 1 dy = edd lat / r e a r t h ;
9

10 var T s = de l t a (j −1, v) ∗ f r a c 1 dy −
11 de l t a (i −1, u) ∗ f r a c 1 dx ;
12 T sqr s = T s ∗ T s ;
13 var S uv = de l t a (j +1, u) ∗ f r a c 1 dy +
14 de l t a (i +1, v) ∗ f r a c 1 dx ;
15 S sqr uv = S uv ∗ S uv ;
16 −Stage :
17 var smag u = math : : s q r t ((avg (i +1, T sqr s) +
18 avg (j −1, S sqr uv))) − hdmaskvel ;
19 smag u = math : : min (0 . 5 , math : : max(0 . 0 , smag u)) ;
20 −Stage :
21 var smag v = math : : s q r t ((avg (j +1, T sqr s) +
22 avg (i −1, S sqr uv))) − hdmaskvel ;
23 smag v = math : : min (0 . 5 , math : : max(0 . 0 , smag v)) ;
24

25 u += smag u ∗ l a p l a c i a n (u) ;
26 v += smag v ∗ l a p l a c i a n (v) ;
27 }}}

Figure 5. Parallel IR of the smagorinsky diffusion operator defined in Fig. 1

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 85

The parallel IR defines different types of data storages:

• User-declared fields: N dimensional fields that are owned by the user with a scope that

goes beyond the Computation. The GTClang front end declares them using the storage

keyword.

• Temporary fields: storage with a scope limited to any of the levels of the parallel IR.

The data allocation and dimensionality of the field will depend on the scope and will be

managed by the toolchain.

• global parameters: scalar basic types to describe non gridded data, like model configuration

switches.

In addition to the parallel IR tree, a program that assembles operators in a model requires

a control flow that can schedule the different computations. The control flow AST contains the

sequence of AST nodes to define a control flow (conditionals, loop iterations, etc.) and nodes

for calls to

• Computations defined in the parallel IR;

• boundary conditions;

• halo exchanges.

All the analyses and optimizations are performed across multiple Computation nodes with-

out control flow dependencies like conditionals or iterations. Therefore program dependence

graphs and control dependence analyses are not used by the toolchain. The control flow AST is

only stored as part of the parallel IR for code generation purposes.

3.2. Optimization Process

A comprehensive list of compiler passes are responsible for organizing the HIR statements

into a valid parallel IR and run optimization algorithms to prepare the IR for efficient code gen-

eration. The passes are organized in three different categories: parallel IR builders, optimization

passes and safety checkers. The safety checkers contain checks for detection of ill-formed numer-

ical codes like access to uninitialized temporaries or write-after-write (WAW) data hazards. The

following will describe the most relevant passes of the first two categories:

3.2.1. Parallel IR Builders

Field Versioning. Numerical discretizations often update a field reusing the same field

identifier for readability of the code and to minimize memory footprint. In the following PDE

example

δu

δt
= f(u) + g(u), (1)

that is discretized to

ut+1 = ut + ∆t(f(ut) + g(ut)) (2)

if f(ut) or g(ut) involves an access to neighbour grid points in the parallel dimension, the field

update can generate data races if the right-hand side (RHS) and the left-hand side (LHS) are

evaluated in the same parallel region. Often this is solved by using a double buffering technique

in the model implementation:

u out = u in+ dt ∗ (f(u in) + g(u in)). (3)

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

86 Supercomputing Frontiers and Innovations

T_s

v

<0,0,-1,0>

u

<-1,0,0,0>

frac_1_dyfrac_1_dx

T_sqr_s

smag_u

<0,1,0,0>

S_sqr_uv

<0,0,-1,0>

hdmaskvel0.50.0

Figure 6. Horizontal data dependency DAG of a subset of the smagorinsky diffusion operator

(Fig. 1)

b
a

c
d

Figure 7. Vertical data dependency DAG of the anti dependent pattern example (Fig. 8)

Since the high-level DSL abstracts away the details of parallelization, it is not possible to know

if RHS and LHS are evaluated within the same parallel region. Therefore GTClang allows to

update fields with stencil computations that generate write-after-read (WAR) data dependencies.

The field versioning pass will create versions of the field to ensure data hazards are resolved in

parallel regions. Read-after-write (RAW) are resolved by the stage splitting pass and write-after-

write (WAW) are legal but should be protected with a compiler warning, since the numerical

algorithm might be ill-formed.

The field versioning pass operates on the following DAG formulation: field accesses

are represented by nodes in the DAG where edges connect fields according to data de-

pendencies. Edges are annotated with the horizontal stencil extent with the notation

<iminus, iplus, jminus, jplus>.

There are two type of edges: solid lines edges for data dependencies with a (not null)

horizontal stencil extent and dashed lines for connecting data with null extents or literals (see

Fig. 6).

The algorithm identifies WAR hazards by finding strongly connected components (SCC) in

the DAG where at least one of the nodes is a non temporary field and contains at least a solid

edge. Temporary fields have a special allocation with redundant halos per block which allow

WAR, unless they are within a single statement.

Stage Splitting. The stage splitting pass will organize the original sequence of statements,

(stmtn), into stages of the parallel IR in order to resolve (RAW) data dependencies that would

introduce data races in the horizontal parallelization.

An example of such data races is observed in the horizontal diffusion smagorinsky example

in the following lines:

1 T sqr s = T s ∗ T s ;

2 var smag u = math : : s q r t ((avg (i +1, T sqr s) + avg (j −1, S sqr uv))) − hdmaskvel ;

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 87

Algorithm 1: Stage splitting algorithm

for stmt in J(stmtn) do

D′ ← D ;

insert stmt accesses in D’;

if ∃{i, j} such that Dij == 1 and ∃j′ such that Djj′ ! = 0 then

create new stage from D’;

D ← ∅ ;

insert stmt accesses in D ;

else
D ← D′

The stage splitting pass resolves this by placing statements with data dependencies in sep-

arate stages.

The algorithm finds a partition of the DAG (see Fig. 6) where any solid edge can only be

connected to leaves of the DAG. Let Dij be the adjacency matrix of the DAG, where elements

of the matrix can take two values for elements that are connected: 1 for a solid edge and 2 for

dashed edges. The algorithm (Algorithm 1) iterates over the statements in the reverse sequence

of statements, J(stmtn), where J is the backward identity matrix.

Multistage Splitting. It is common in weather and climate applications to find vertical

implicit solvers that introduce a loop-carried dependence (see Fig. 8).

Anti dependence patterns are also allowed for read-only fields or field accesses before a write.

vertical region (k s t a r t , k s t a r t) {
phi = 0 ;

}
vertical region (k s t a r t , k end) {

phi = phi [k−1] ;

}

vertical region (k s t a r t+1 , k end−1) {
b = (a [k + 1])∗0 . 5 ;

c = b [k−1] ;

d = c [k+1]∗a ;

}

Figure 8. Examples of (left) vertical solver and (right) vertical antidependence pattern

On the contrary, an anti dependence pattern on a field after a write statement would access

outdated or uninitialized data. The Multistage splitting identifies anti dependence patterns on

temporary accesses and fixes them by splitting and creating a new multistage with reverse

vertical loop ordering.

The algorithm is similar to stage splitting. It processes a graph where edges are colored

green for in loop data dependence and red for anti dependencies (see Fig. 7).

The algorithm traverses each edge of the graph. If a red edge is found, the loop order is

reversed to fix the anti dependence. If a red and a green edges are traversed, then the multistage

is split. Edges on leaves are ignored, since they connect to read-only data.

Interval Computation Partition. The user DSL code is provided as an ordered sequence

of (in general) overlapping vertical region computations. In order to be able to fuse computations

of the different interval regions into a single vertical loop, the interval computation partition

pass will reorganize the ordered set into a non overlapping ordered set of interval computations

of the parallel IR (Section 3.1). The sequence can be described as an interval graph where edges

connect interval nodes that are overlapping. From there, the interval partitioning algorithm

derives a set of non-overlapping interval computations as follows:

Let e(X,Y) be any edge that connects two nodes X and Y.

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

88 Supercomputing Frontiers and Innovations

for e(X,Y) : G do

G′ ← {G \ {X,Y }, (X ∩ Y), (X 	 Y)} ;

where the set operations on interval computations are defined as:

{Ix, (stmtxn)} ∩ {Iy, (stmtyn)} = {Ix ∩ Iy, (stmtxn, stmtyn)} (4)

{Ix, (stmtxn)} 	 {Iy, (stmtyn)} =

{
{Ix \ Iy, (stmtxn)}
{Iy \ Ix, (stmtyn)} (5)

assuming that ICx = {Ix, (stmtxn)} and ICx <= ICy in the ordered set of interval computations.

Transformations are iteratively applied until non of the nodes are connected.

Scope of temporaries. The toolchain will size the dimensionality of the temporary storages

according to the scope of the temporary usages in the parallel IR tree (Fig. 4). The scope of

temporaries pass will determine the lifetime and scope of each temporary, and optimize the

dimensionality required accordingly.

3.2.2. Optimization passes

The first instance of the parallel IR would generate legal parallel implementations but is

still non optimized and requires further transformations in order to produce efficient implemen-

tations. This is done with a set of optimizations presented in this section. All the optimizations

performed in the toolchain are domain specific based on analyses of the domain specific, high-

level information stored in the parallel IR.

Stage Reordering. The compiler passes discussed in Section 3.2.1 are necessary to map a

sequential description of the numerical algorithms into the parallel IR model from Section 3.1.

However, the splitting algorithms tend to generate a large number of Stages and MultiStages.

The stage reordering will reorder Stages according to data dependencies in order to group and

merge them together, increasing the data locality of the algorithms. The algorithm operates on

the stage dependency DAG, where a stage S1 depends on stage S2 if and only if:

• The vertical intervals where S1 and S2 are defined overlap.

• Both access at least one common field with the policies defined as in Tab. 1.

Table 1. IO policies to consider a data hazard between

stages

S2 policy

S1 policy

Input Output Input-Output

Input x x

Output x x

Input-Output x x x

Table 1 extends the definition of write-after-read (WAR), write-after-write (WAW) and

read-after-write (RAW) hazards [14] for a compiler framework without single static assignment,

where input-output accesses to a field are allowed for a single statement.

The algorithm iterates over all the stages in a reverse order and finds the leftmost position

in the tree where the stage can be moved, accordingly to the following criteria:

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 89

• If the Stage is moved into another MultiStage, the loop orders must be compatible. A for-

ward order Stage can be inserted into a parallel but not into a backward order MultiStage.

• A Stage S1 can be moved over S2 only if there is no path from S1 to S2 in the stage

dependency DAG.

• Placing a stage into a new MultiStage should not introduce any anti dependence in the

vertical dimension (see multistage splitting pass).

Stage Merging. As a result of the stage and multistage splitting pass, potentially many

fine grained stages might be generated. The stage reordering pass will naturally group stages

together that are connected via data dependencies, increasing data locality. Since every stage

requires synchronize, the stage merging pass will merge various stages into a single one. It

contains two modes:

• merge stages that are trivially mergeable since they specify the same level of redundant

computations [10];

• merge stages even if they specify different level of redundant computations.

Temporary Merging. As a result of the field versioning pass, or usage of many tempo-

raries, the parallel IR usually contains more temporary allocations than required. This increases

the memory footprint and the load on the scratchpad memory. The temporary merging pass will

reduce the number of temporaries to the minimum required. The pass operates on a reduced

version of the data dependency DAG (Fig. 6) where only temporary fields are represented as

nodes, and where two nodes are connected if there is a path that connects them in the original

DAG. A coloring algorithm of the DAG of temporaries will identify the required number of

temporary fields, where nodes with the same color will share the same temporary identifier.

Inlining. The stage splitting pass will generate a pipeline of stage computations that require

synchronization of the parallel computational units, since stages are connected via horizontal

data dependencies. The stage computations are executed in a tiled decomposition of the domain,

allowing to cache the data that connects the different stages in some type of fast on-chip memory.

stenci l h o r i d i f f {
storage dphi , phi , c ;

Do {
vertical region (k s t a r t , k end){
l ap = −4∗phi + c ∗(phi [i +1] +

phi [i −1] + phi [j +1] + phi [j −1);
dphi = −4∗ l ap + c ∗(lap [i +1] +

lap [i −1] + lap [j +1] + lap [j −1);
}}} ;

stenci l h o r i d i f f {
storage dphi , phi , c ;

Do {
vertical region (k s t a r t , k end){
dphi = (16+4∗ c∗c)∗ phi
−8∗c ∗(phi [i−1]+phi [i +1]+phi [j−1]+phi [j +1])+
c∗c ∗(phi [i +2]+phi [i−2]+phi [j+2]+phi [j −2] +
2∗ c∗c ∗(phi [i +1, j+1]+phi [i +1, j−1]+
phi [i −1, j+1]+phi [i −1, j −1])) ;

}}} ;

Figure 9. Fourth-order diffusion operator as a two stage Laplacian operator in DSL form (left)

and the dawn inlined version (right)

Alternatively, any intermediate computation that is not part of the input/output field dec-

laration of the computation can be inlined, avoiding the memory operations but generating a

larger stencil matrix computation. An example of a double Laplacian stage computation of a

fourth-order diffusion operator is inlined in Fig. 9.

The algorithm traverses the reverse sequence of statements of each interval computation

finding assignments on temporary fields that are only accessed in the parallel dimensions (i, j).

The right hand side of the assignment is stored as the definition of a function that computes the

temporary and the assignment stmt is removed. If the assignment statement depends on local

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

90 Supercomputing Frontiers and Innovations

variable declarations, they need to be promoted to temporary fields (with the right dimension-

ality) before recursively inlining all data dependencies of the RHS of the assignment.

A second iteration over the reverse sequence of statements will replace all field accesses to

the temporary by the function definition evaluated at the stencil offset of the temporary access.

The pre-computation and inlined algorithms exhibit completely different arithmetic inten-

sity. Performance of the different versions will depend on the computation (stencil shape, memory

accesses, ...) and the hardware architecture and its memory subsystem.

Vertical register caching detection. An important optimization for implicit vertical

solvers is to cache in registers a ring buffer of near k accesses reused through the vertical

iteration, as in the following example: The ring buffer keeps values of vertical levels that will

still be accessed from the vertical iteration of neighbour vertical levels, and it will synchronize

values with the field in main memory whenever required according to the input-output pattern

of the computation. Often the levels at the head of the ring buffer needs to be filled from the

main memory for input accesses while values of the tail of the ring buffer must be flushed into

main memory from the ring buffer. Additionally a pre-fill/post-flush operation of the ring buffer

before/after processing the Interval Computation might be needed to synchronize the required

sections of the ring buffer (Fig. 10).

1 v e r t i c a l r e g i o n (k s t a r t +3, k end−2) {
2 a = (a [k+2] + a [k+1] + a +
3 a [k−1] + a [k−2])∗0 . 2 ;
4 }

Figure 10. (Left) representation of the ring buffer and the different sections that will require

synchronization with main memory for the vertical average example operation (right)

3.3. Code Generation

The last step in the toolchain is the code generation. The optimizer passes have organized

the original HIR into a structured parallel IR that contains all the components required for

generating an efficient parallel implementation with stencil computations, halo exchanges and

boundary conditions. Dawn supports three code generators:

• a naive C++ sequential generator, used for debugging purposes;

• a GridTools DSL generator;

• a specialized CUDA generator.

All the existing generators make use of different GridTools components like the multidimen-

sional storage facility and the halo exchange library. In particular the use of the multidimensional

storage allows to escape the DSL language by using the storage objects that abstract away the

details of memory layouts of the fields.

4. Experimental Results

In this section we present performance results obtained for the most relevant dynamical

core operators of COSMO. They provide a diverse set of computational patterns of weather

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 91

and climate application in Cartesian grids. The performance baseline of the dynamical core of

COSMO has been analyzed in detail for NVIDIA GPUs [8].

The benchmarks are collected on the Piz Daint system at the Swiss National Supercomputing

Centre (CSCS). The nodes are equipped with a 12-core Intel Xeon CPU (E5-2690 v3 @ 2.60 GHz)

and an NVIDIA Tesla P100. Each node has 16 GB of HBM2 memory on the GPU. The nominal

peak memory bandwidth of the GPU is 732 GB/s. All executables were compiled using gcc 7.3

and the nvvc compiler shipped with CUDA 10.0. Timing information is collected using CUDA

events. All the experiments are verified by comparing the output of the optimized generated

code with the naive C++ code generation on input data artificially generated using smooth

mathematical functions.

4.1. COSMO Dynamical Core Results

Figure 11 shows the performance comparison between the production GPU code using the

STELLA DSL and Dawn CUDA generation, for the most relevant stencils of the dynamical

core of COSMO and a domain size of 128x128x80. Although Dawn does not support yet the

STELLA tracer functionality that performs the same computation on multiple tracer fields in the

same parallel kernel, two tracer operators (AdvPDBottX/Y) were added where the optimization

in STELLA has been disabled for the comparison purposes. The data shown in the plots are

showing the harmonic mean x̃(h) = n∑n
i=1(1/xi)

[6, 13]. Errors were removed from Fig. 11 since

they are not perceptible at the scale of the figure.

The performance of the Dawn CUDA backend obtained on P100 GPUs outperforms the

STELLA optimized GPU production code, with performance improvements that vary from

2.62x (for HoriAdvPPTP operator) to same performance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

3−10×

time (s)

FWSCQCond

ConvTemp_T

VDiffDqvdt

Coriolis

FWExplDiv

FWVDivHelp

HoriAdvUV

AdvPDBottX

AdvPDBottY

VDiffW

HoriAdvWWcon

VDiffPrepStep

HoriDiffSmag

HoriDiffLimit

Satad

FWLHS

HoriAdvPPTP

FWUV

VertAdvPPTP

HoriDiff2

FWWPPTP

VertAdvUVW

FWRHS

FWPrepLHS

STELLA

Dawn (CUDA backend)

Figure 11. Performance of individual stencil objects of the COSMO dynamical core on P100

NVIDIA GPUs

In order to understand importance of the most relevant optimizers of Dawn, Tab. 2 evaluates

the impact of disabling them for some of the components of the dynamical core of COSMO.

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

92 Supercomputing Frontiers and Innovations

Table 2. Time (ms) for P100 GPU of some components of

the dynamical core of COSMO measured with some of the

Dawn optimizations disabled

Full Opt No stage reordering/stage merging

FastWaves 2.6 4.5

No vert register caching

VertUVW 0.57 0.86

No temporary merging

HoriDiffSmag 0.098 0.13

Table 3. Computational time (ms) of one time step of the

fast waves solver of the dynamical core of COSMO for a

P100 GPU

time (ms)

STELLA 3.08902

Dawn 2.680

4.2. Global Optimizations

The STELLA based dynamical core of COSMO [10] was implemented as a set of complex

stencil operators (see Fig. 11) that are glued together by a C++ driver code. The driver code

connects all stencil components, implements time iterations, manage data storages, and performs

other administrative functions. Contrary to Dawn, STELLA requires the user to organize the

code in components that do not contain data dependencies.

Therefore, there is a compromise in designing how many computations are fused within each

stencil component that will increase data locality but at the same time increases the complexity

of the data dependencies that need to be understood by the user to produce correct and efficient

code. Most of the stencils STELLA stencils of the dynamical core define no more than 4–5 Stages

and 2–3 MultiStages. This approach has the following drawbacks:

• It limits the data locality optimizations that can be performed by the DSL since only a

limited scope of computations are expressed within a DSL stencil object.

• It requires infrastructure that glues all the DSL stencil objects together increasing boiler-

plate required to composed a full dynamical core.

One of the advantages of GTClang/Dawn compared to other approaches is the possibility

to express entire models within the DSL language. We demonstrate this on the fast waves

component of the dynamical core of COSMO, that is composed by 11 STELLA stencil objects,

and a total size of approximately 4K lines of code.

The GTClang/Dawn implementation of the fast waves reduces the amount of lines of code

to approximately 800. The performance results are summarized in Tab. 3.

The main optimizer pass that allows to integrate large stencil computations is the stage

reordering pass. The same fast waves without the stage reordering pass takes 4.5 ms (Tab. 2).

As shown in Tab. 3, the CUDA implementation generated by Dawn outperforms the version

in production using the STELLA DSL. However, the stage reordering pass is an algorithm

that tends to fuse computations together as much as possible within the same kernel, which

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 93

in general will not lead to the most efficient implementation. An optimal solution should be

driven by a performance model that minimizes HBM2/DDR memory accesses and at the same

time minimizes on-chip resource consumption like shared memory or registers. The optimization

problem is NP-hard and not solved for the complexity of a full dynamical core, although there

are approaches that find solutions for a smaller problem sizes [11, 12, 23].

4.3. Maintainability and Model Development Productivity

One of the recurring parameters for maintainability across various models is lines of code

(LOC). In order to quantify the gain in maintainability, we measured this for the fast waves

of the dynamical core of COSMO, where the GTClang implementation (800 LOC) requires

a factor 5x less than the operational code (4200 LOC). With similar order of magnitude the

original Fortran implemention of the COSMO consortium requires 5000 LOC, as well as the

optimized CUDA generated code of Dawn.

Therefore, GTClang/Dawn considerably reduces the amount of code required to express

numerical algorithms which will increase the model development productivity and improve the

model maintainability. However, there are other metrics in addition to LOC that contribute to

significantly improve the maintainability:

Lack of Parallelism. Since the Dawn DSL does not expose parallelism to the user, a

significant amount of boilerplate code as well as code complexity is no longer present in the user

code. This does not only decrease the LOC but also increases safety, since parallel errors typical

of programming models like OpenMP/OpenACC cannot occur.

Lack of Optimization. Since all the optimizations are performed by the Dawn toolchain,

the GTClang language mostly expresses only the numerical algorithm. All optimizations and

hardware dependent code, such as tiling, register or scratch-pad software managed cache, loop

nesting, etc., hinder the scientific development. The use of a high-level language like GTClang

increases considerably the readability of the numerical algorithm and model development pro-

ductivity.

Reduction of Driver Code. As shown for the fast waves, the possibility to develop full

models within the DSL, removes the necessity of complex infrastructure to glue all the stencil

objects, data management and driver code that increases the overall maintenance of the model.

Conclusions

We have presented Dawn, a high-level DSL compiler toolchain that solves the performance

portability problem of weather and climate applications. The DSL compiler is designed as a mod-

ern modular compiler. We demonstrated the usage of Dawn on the dynamical core of COSMO

and presented performance results for the CUDA back end of Dawn on P100 GPUs. All the

stencil computations outperform the optimized production code using the STELLA DSL, ob-

taining speedup factors of up to 2x. This significantly reduces the amount of code required (up

to a factor of 5x). More importantly, the lack of explicit parallelism in the HIR and GTClang

language provides a safe (against parallel errors) and highly productive scientific development

environment.

The dynamical core is the most computationally expensive component of the model, ac-

counting for 60 % of the total simulation time. Furthermore, it is the most complex in terms of

computational patterns. Other components like the physical parametrizations contain column

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

94 Supercomputing Frontiers and Innovations

based only computations that are subset of the patterns supported by dawn for dynamical cores.

Therefore the DSL toolchain proposed is applicable to entire models. Although the version of

dawn presented here is demonstrated on the COSMO model, its applicability is not restricted

to regional models. Additional development projects are porting the advection operators of the

operational ocean model of NEMO [9]. Furthermore, the dawn collaboration is extending the

toolchain in order to support two new categories of global weather and climate models:

• Cube sphere grids (adding support for corner and edge specializations). Current develop-

ments are working on porting the dynamical core of the FV3 model to DSL using dawn [16].

• Global models on triangular grids. New language extensions will allow to port models

that can not be described with Cartesian operators. A version of the dynamical core of

ICON [26] model is being developed using the DSL based on dawn.

Dawn is the only high-level DSL compiler known to the authors that allows to express an

entire weather and climate model using a concise, simple and sequential language, and delivers

an optimized model implementation that outperforms operational models even on modern GPU

architectures.

Future developments will allow to apply this novel DSL language and compiler to a wider

range of global models, and demonstrate its applicability on two of the most renowned models

like FV3 and ICON.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Bertagna, L., Deakin, M., Guba, O., Sunderland, D., Bradley, A.M., Tezaur, I.K., Taylor,

M.A., Salinger, A.G.: Hommexx 1.0: A performance portable atmospheric dynamical core

for the energy exascale earth system model. Geoscientific Model Development Discussions

2018, 1–23 (2018), DOI: 10.5194/gmd-2018-218

2. Christen, M., Schenk, O., Burkhart, H.: Patus: A code generation and autotuning frame-

work for parallel iterative stencil computations on modern microarchitectures. In: 2011 IEEE

International Parallel Distributed Processing Symposium, 16-20 May 2011, Anchorage, AK,

USA. pp. 676–687. IEEE (2011), DOI: 10.1109/IPDPS.2011.70

3. Clement, V., Ferrachat, S., Fuhrer, O., Lapillonne, X., Osuna, C.E., Pincus, R.,

Rood, J., Sawyer, W.: The CLAW DSL: Abstractions for performance portable weather

and climate models. In: Proceedings of the Platform for Advanced Scientific Comput-

ing Conference, Basel, Switzerland. pp. 2:1–2:10. ACM, New York, NY, USA (2018),

DOI: 10.1145/3218176.3218226

4. Doms, G., Baldauf, M.: A Description of the Nonhydrostatic Regional COSMO-Model –

Part I: Dynamics and Numerics. COSMO – Consortium for Small-Scale Modelling (2015),

http://cosmo-model.org/content/model/documentation/core/cosmoDyncsNumcs.pdf

5. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore performance

portability through polymorphic memory access patterns. Journal of Parallel and Dis-

tributed Computing 74(12), 3202–3216 (2014), DOI: 10.1016/j.jpdc.2014.07.003

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 95

http://dx.doi.org/10.5194/gmd-2018-218
http://dx.doi.org/10.1109/IPDPS.2011.70
http://dx.doi.org/10.1145/3218176.3218226
http://cosmo-model.org/content/model/documentation/core/cosmoDyncsNumcs.pdf
http://dx.doi.org/10.1016/j.jpdc.2014.07.003

6. Fleming, P.J., Wallace, J.J.: How not to lie with statistics: the correct way to summarize

benchmark results. Communications of the ACM 29(3), 218–221 (1986)

7. Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.S.P.: Device

scaling limits of Si MOSFETs and their application dependencies. Proceedings of the IEEE

89(3), 259–288 (2001), DOI: 10.1109/5.915374

8. Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., et al.: Near-global climate simulation

at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0.

Geoscientific Model Development 11(4), 1665–1681 (2018), DOI: 10.5194/gmd-11-1665-2018

9. Gurvan, M., Bourdall-Badie, R., Bouttier, P.A., Bricaud, C., et al.: NEMO ocean engine

(2017), DOI: 10.5281/zenodo.3248739

10. Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., Schulthess, T.C.: STELLA: a domain-specific

tool for structured grid methods in weather and climate models. In: Proceedings of the Inter-

national Conference for High Performance Computing, Networking, Storage and Analysis,

15-20 Nov. 2015, Austin, TX, USA. pp. 1–12. IEEE (2015), DOI: 10.1145/2807591.2807627

11. Gysi, T., Grosser, T., Hoefler, T.: MODESTO: Data-centric Analytic Optimization of Com-

plex Stencil Programs on Heterogeneous Architectures. In: Proceedings of the 29th Interna-

tional Conference on Supercomputing, Newport Beach, CA, USA. pp. 177–186. ACM, New

York, NY, USA (2015), DOI: 10.1145/2751205.2751223

12. Gysi, T., Grosser, T., Hoefler, T.: Absinthe: Learning an Analytical Performance Model

to Fuse and Tile Stencil Codes in One Shot. In: Proceedings of the 28th International

Conference on Parallel Architectures and Compilation Techniques, 23-26 Sept. 2019, Seattle,

WA, USA. pp. 370–382. IEEE (2019), DOI: 10.1109/PACT.2019.00036

13. Hoefler, T., Belli, R.: Scientific Benchmarking of Parallel Computing Systems. In: Pro-

ceedings of the International Conference for High Performance Computing, Network-

ing, Storage and Analysis, 15-20 Nov. 2015, Austin, TX, USA. pp. 1–12. ACM (2015),

DOI: 10.1145/2807591.2807644

14. Kuck, D.J., Kuhn, R.H., Padua, D.A., Leasure, B., Wolfe, M.: Dependence graphs and

compiler optimizations. In: Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, Williamsburg, Virginia. pp. 207–218. ACM, New

York, NY, USA (1981), DOI: 10.1145/567532.567555

15. Lattner, C.: LLVM and Clang: Next generation compiler technology. In: The BSD confer-

ence, May 2008, Ottawa, Canada. vol. 5 (2008)

16. Lin, S.J.: A “vertically Lagrangian” finite-volume dynamical core for global

models. Monthly Weather Review 132(10), 2293–2307 (2004), DOI: 10.1175/1520-

0493(2004)132¡2293:AVLFDC¿2.0.CO;2

17. Melvin, T., Mullerworth, S., Ford, R., Maynard, C., Hobson, M.: LFRic: Building a new

Unified Model. In: EGU General Assembly Conference Abstracts. EGU General Assembly

Conference Abstracts, vol. 19, p. 13021 (2017)

Dawn: a High Level Domain-Specific Language Compiler Toolchain for Weather and...

96 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1109/5.915374
http://dx.doi.org/10.5194/gmd-11-1665-2018
http://dx.doi.org/10.5281/zenodo.3248739
http://dx.doi.org/10.1145/2807591.2807627
http://dx.doi.org/10.1145/2751205.2751223
http://dx.doi.org/10.1109/PACT.2019.00036
http://dx.doi.org/10.1145/2807591.2807644
http://dx.doi.org/10.1145/567532.567555
http://dx.doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2

18. Mullapudi, R.T., Vasista, V., Bondhugula, U.: Polymage: Automatic optimization for

image processing pipelines. SIGARCH Comput. Archit. News 43(1), 429–443 (2015),

DOI: 10.1145/2786763.2694364

19. Osuna C., Clement V.: MeteoSwiss-APN/HIR 0.0.1 (2019), DOI: 10.5281/zenodo.2629314

20. Osuna C., Thuering F., Wicky T., Dahm J., et al.: MeteoSwiss-APN/dawn: 0.0.2 (2020),

DOI: 10.5281/zenodo.3870862

21. Porter, A.R., Appleyard, J., Ashworth, M., Ford, R.W., Holt, J., Liu, H., Riley, G.D.:

Portable multi- and many-core performance for finite-difference or finite-element codes –

application to the free-surface component of NEMO (NEMOLite2D 1.0). Geoscientific Model

Development 11(8), 3447–3464 (2018), DOI: 10.5194/gmd-11-3447-2018

22. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.: Halide: A

language and compiler for optimizing parallelism, locality, and recomputation in image pro-

cessing pipelines. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation, Seattle, Washington, USA. pp. 519–530. ACM, New

York, NY, USA (2013), DOI: 10.1145/2491956.2462176

23. Rawat, P.S., Rastello, F., Sukumaran-Rajam, A., Pouchet, L.N., Rountev, A., Sadayappan,

P.: Register optimizations for stencils on GPUs. ACM SIGPLAN Notices 53(1), 168–182

(2018), DOI: 10.1145/3178487.3178500

24. Schär, C., Fuhrer, O., Arteaga, A., Ban, N., et al.: Kilometer-scale climate models:

Prospects and challenges. Bulletin of the American Meteorological Society 101(5), E567–

E587 (2020), DOI: 10.1175/BAMS-D-18-0167.1

25. Schulthess, T., Bauer, P., Fuhrer, O., Hoefler, T., Schaer, C., Wedi, N.: Reflecting on the

goal and baseline for exascale computing: a roadmap based on weather and climate simula-

tions. Computing in Science and Engineering (CiSE) 21(1), 30–41 (2019), DOI: 10.1109/M-

CSE.2018.2888788

26. Zangl, G., Reinert, D., Ripodas, P., Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic)

modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynami-

cal core. Quarterly Journal of the Royal Meteorological Society 141(687), 563–579 (2015),

DOI: 10.1002/qj.2378

C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

2020, Vol. 7, No. 2 97

http://dx.doi.org/10.1145/2786763.2694364
http://dx.doi.org/10.5281/zenodo.2629314
http://dx.doi.org/10.5281/zenodo.3870862
http://dx.doi.org/10.5194/gmd-11-3447-2018
http://dx.doi.org/10.1145/2491956.2462176
http://dx.doi.org/10.1145/3178487.3178500
http://dx.doi.org/10.1175/BAMS-D-18-0167.1
http://dx.doi.org/10.1109/MCSE.2018.2888788
http://dx.doi.org/10.1109/MCSE.2018.2888788
http://dx.doi.org/10.1002/qj.2378

	C. Osuna, T. Wicky, F. Thuering, T. Hoefler, O. Fuhrer

