
Survey on Software Tools that Implement Deep Learning

Algorithms on Intel/x86 and IBM/Power8/Power9 Platforms

Denis Shaikhislamov1 , Andrey Sozykin2,3, Vadim Voevodin1

c© The Authors 2019. This paper is published with open access at SuperFri.org

Neural networks are becoming more and more popular in scientific field and in the industry. It

is mostly because new solutions using neural networks show state-of-the-art results in the domains

previously occupied by traditional methods, eg. computer vision, speech recognition etc. But to

get these results neural networks become progressively more complex, thus needing a lot more

training. The training of neural networks today can take weeks. This problems can be solved by

parallelization of the neural networks training and using modern clusters and supercomputers,

which can significantly reduce the learning time. Today, a faster training for data scientist is

essential, because it allows to get the results faster to make the next decision.

In this paper we provide an overview of distributed learning provided by the popular modern

deep learning frameworks, both in terms of provided functionality and performance. We consider

multiple hardware choices: training on multiple GPUs and multiple computing nodes.

Keywords: HPC, neural networks, deep learning frameworks, distributed training.

Introduction

Neural networks are currently one of the most popular methods for creating AI systems.

They show state-of-the-art results in many areas, including computer vision [55, 59, 62, 69],

natural language processing [53, 58], speech recognition [56, 71]. However, to achieve such results,

neural networks are becoming more and more complex and more and more data is needed for

their training [53, 60, 64]. As a result, the training of such neural networks requires considerable

time: days, weeks, and even months.

Problems with training neural networks can be solved using modern clusters and supercom-

puters. In this case, the neural network is trained in parallel on several computing nodes of the

cluster, which can significantly reduce the learning time [54]. In addition, you can train a large

network on a parallel computing system that does not fit in the memory of one computer [52, 60].

As a result, distributed training of neural networks is rapidly gaining popularity.

In this paper, we provide an overview of distributed training of neural networks that exist

in modern deep learning frameworks. The usage of various hardware options for distributed

training are considered: distributed training on several GPUs and several computing nodes.

It also describes approaches to the logic of organizing distributed learning. The most popular

approaches of distributed training are model and data parallelism. In data parallelism, each

device contains a complete copy of the neural network and performs training on parts of the

data. In the case of model parallelism, the neural network is divided into separate parts, which

are distributed among devices and are trained on a complete data set.

There are two types of distributed learning organization: asynchronous and synchronous.

In asynchronous training, parallelization occurs due to the breakdown of work between workers

and parameter servers. Workers are used for training (independently of each other), and param-

eter servers only store model parameters and their modification. The synchronous approach is

1Research Computing Center of Lomonosov Moscow State University, Moscow, Russian Federation
2Ural Federal University, Ekaterinburg, Russian Federation
3N.N. Krasovskii Institute of Mathematics and Mechanics, Ekaterinburg, Russian Federation

DOI: 10.14529/jsfi190404

2019, Vol. 6, No. 4 57

https://orcid.org/0000-0002-9279-6397
https://orcid.org/0000-0003-1897-1828

organized as follows. Workers have their own copy of the model, but the data is different. After

the workers have processed their part of the data, they exchange results with each other and at

the same time change the parameters of the model. You can combine these two methods: use

synchronous learning within a node with several GPUs and use asynchronous learning between

nodes.

Currently there is a large number of frameworks for training neural networks, the most pop-

ular of which are TensorFlow, Caffe, Caffe2, Torch, PyTorch, MXNet, Theano, PaddlePaddle,

Microsoft Cognitive Toolkit, Deeplearning4j, Keras and OpenCV. All these frameworks can use

parallel training on several computing cores and processors, conduct training on the GPU, but

the possibilities of using distributed training are much more limited. In this review, we included

libraries that can only parallelize the training of a neural network on several GPUs and com-

puting nodes. Therefore, it was necessary to exclude such popular frameworks as Theano and

OpenCV, in which distributed learning tools are not developed.

This paper discusses the possibility of using parallel computing systems only for training

deep neural networks. The inference requires other optimizations, including the features of par-

allel execution and use of GPUs on mobile systems [70]. Supercomputers are rarely used for

inference.

The rest of the paper is organized as follows. Section 1 describes the most common frame-

works. The following items are highlighted for each framework:

• A brief description of the development history and current status.

• Implementation features and a list of supported algorithms – we give description of the

basic principles of the framework. The support for the implementation of the main types

of neural networks (fully connected, convolutional (CNN), recurrent (RNN), deep au-

toencoders (DAE), generative adversarial network (GAN) and networks with Transformer

architecture) is indicated for each framework.

• Optimizations for Intel, Power, Nvidia platforms – describes the availability of optimiza-

tions, as well as their application in terms of availability.

• Use of several GPUs for training – the possibility of using several GPUs for training both

with the standard package and with the help of add-ons.

• Support for training on multiple nodes – the ability to start training a neural network on

multiple machines (for example, on different nodes of a cluster). Both standard support

and the use of add-ons are considered.

Section 2 shows the comparison of frameworks both in terms of functionality and perfor-

mance on the base models that are used by the community to evaluate the performance of various

frameworks. It is worth noting that in Section 1 the questions of the frameworks performance

are not addressed.

1. Deep Learning Frameworks Overview

1.1. TensorFlow

1.1.1. Overview

TensorFlow (hereinafter, TF) [47] is a relatively young framework for high-performance

computing, which is mainly used as a framework for implementing deep learning methods and

is developed by the Google Brains team. It was developed in a closed manner until 2015, but

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

58 Supercomputing Frontiers and Innovations

after its revamp it was released to the public. The TF core is mostly written in a combination of

C++ and CUDA, but there are also parts written in Python. TF has an API for both Python

and C++, but since TF is mainly used in Python, this review will look at the Python API.

TF is in an active development. Current version is TensorFlow 2.0, which focuses on ease of

use, including the ease of distributed learning. Detailed development plans can be seen in [45].

1.1.2. Implementation features and a list of supported algorithms

TF relies on the concept of a computation graph that describes data and operations on

it. Because of this mechanism, TF can be used for almost any calculation. Examples of simple

graphs are shown in Fig. 1.

Figure 1. Examples of simple computation grahs

The computation graph can be created by the user himsel. Also, the graph is created by

default when the framework is used, which will be used if you do not specify which graph the

operation is performed with. TF implements a lot of algorithms for both deep learning and

traditional machine learning.

Inside the graph, the data is represented by the so-called tensors (n-dimensional matrices).

The size of the matrix can be specified on its definition, or it may not be specified if the size of

the matrix changes dynamically during the execution of the calculation graph.

The graph is calculated within the session, to where all the data necessary for calculation

is passed, after which the graph is calculated, and the result of the execution is returned. In

version TF 2.0, Eager execution has appeared, which makes it possible to start calculations

without creating a session.

In TensorFlow you can implement algorithms that efficiently utilize tensors (for example,

there are ray tracing implementations on TF). But since all the necessary algorithms for deep

learning are provided inside the framework, it is most often used for deep learning. In TF

most of the optimizers (gradient descent, Adagrad, AdaDelta, momentum, Adam, etc.) and

activation functions (relu, relu6, elu, sigmoid, tanh, softplus, softsign, dropout, softmax etc.)

are implemented.

In TensorFlow you can implement all the main types of neural networks: fully connected,

convolutional, recurrent, deep autoencoders, GAN and Transformer.

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 59

1.1.3. Intel, Power, Nvidia platform optimizations

TF optimization for Intel are mentioned even on the official TF website. For example, TF will

work optimally if it is built from the source files provided on the official TF website, which will

incorporate all the features of Intel processors. Also, Intel has MKL-DNN, which is supported

by TF (TF with Intel MKL-DNN).

TF is available in the PowerAI framework package, which includes Power-optimized versions

of the popular frameworks and Distributed Deep Learning (DDL), which is a communication

library optimized for distributed training of neural networks. It is worth noting that PowerAI

supports only GPU systems.

It is also worth noting that the versions of Intel and PowerAI do not differ in terms of im-

plemented algorithms. This is also true for subsequent frameworks, unless otherwise is specified.

TF has an optimized version for Nvidia GPUs, which can be downloaded from the official

website. This version uses the CUDA library, which is used to run general-purpose computing

on the GPU, and cuDNN, containing effective operations for working with neural networks

on the GPU. In addition, NVidia has a special platform called the Nvidia GPU Cloud, which

has a container docker directory with preinstalled and optimized NVidia software, including

TensorFlow.

1.1.4. Multi-GPU and Multi-node training of neural networks

The TF framework was developed with the goal of providing distributed training in large

clusters, so it includes training tools on several GPUs and computing nodes.

Data-parallel training in TF is implemented in the Distribution Strategy API

(tf.distribute.Strategy), which includes several strategies for distributed training [14]. The most

popular approach is synchronized distributed training on several GPUs, both on one node (Mir-

roredStrategy) and on several nodes, each of which can have several GPUs installed (Multi-

WorkerMirroredStrategy). It is also possible to use asynchronous training using the Parame-

terServerStrategy strategy. The strategy allows the use of several nodes as parameter servers

and workers, and nodes with workers can contain several GPUs. When using the Distribution

Strategy in conjunction with the high-level TensorFlow APIs (Keras and Estimators), paral-

lelization of training is performed automatically, both on several GPUs within the same node,

and between cluster nodes. Developing your own layers or training methods requires you to

explicitly use the parallel programming.

Model-parallel training in TF is possible using the Mesh TensorFlow library [66]. This library

is an add-on for TF and defines the language of distributed processing of tensors. The library

allows you to explicitly indicate by which dimension the tensors will be divided for distributed

processing. As a result, it is possible to parallelize operations both by model and by data,

which provides data-parallel or model-parallel training, as well as its combination. Training is

performed in synchronous mode; all synchronization operations are provided automatically by

the Mesh TensorFlow library.

There is a separate library from TF, Horovod [65], which runs on top of TF and PyTorch

and provides a simpler interface for implementing distributed synchronous training on clusters.

The library uses MPI for communication between processes, and it is also possible to use several

GPUs on a node. More details about the use of Horovod can be found in [20]. It is worth noting

that Horovod can be used with the DDL communication library from IBM; details are presented

in [13].

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

60 Supercomputing Frontiers and Innovations

1.2. Caffe and Caffe2

1.2.1. Overview

Caffe (Convolutional Architecture for Fast Feature Embedding) [57] is a deep learning frame-

work developed by the University of California, Berkeley. The main emphasis in this framework

was made on the task of image classification and segmentation. Caffe is distributed under the

BSD license. It is believed that Caffe is one of the very first successful deep learning frameworks,

considering many research papers that have used this framework. Caffe has a library of pre-built

and pre-trained models of neural networks that have been successfully used in a particular sub-

ject area. This resource is called Model Zoo and it is considered a big advantage of Caffe, since

there are many useful models there, which is why other frameworks usually implement Caffe

model converters into their own.

The framework is written in C++ with an interface for Python.

Caffe is no longer supported, since the development team has switched its interest towards

the development of Caffe2 [5]. At the end of March 2018, the PyTorch and Caffe2 teams merged,

after which Caffe2 moved to the PyTorch repository and became a part of it. The latest version

of Caffe, 1.0, was released on April 18, 2017.

1.2.2. Implementation features and a list of supported algorithms

In Caffe, everything is built on layers. Layer is a description of a data processing operation.

It can implement both a neural network layer and pooling (non-linear compression of a feature

map, in which a group of pixels is compressed to 1 pixel using a non-linear transformation, such

as a maximum function), filters, non-linear transformations, an error function, etc. The neural

network (Net) itself will consist of many layers, which must be described in the configuration

file in the Protobuf format.

The layers also have two functions: forward and backward. In the forward function, the error

function is calculated; in the backward function the gradients are calculated to further change

the model parameters. Inside the layer, two versions of each of these functions are implemented,

one for the CPU, the second for the GPU. Depending on the mode (CPU or GPU), which is

specified at the beginning of the program, the corresponding method will be called (CPU is used

by default). In the neural network itself, the functions of the forward and backward passage will

invoke the corresponding functions of the layers included in the neural network.

The final element is the optimizer (Solver), which implements the optimizer of your choice.

Supported: SGD, AdaDelta, AdaGrad, Adam, Nesterovs Accelerated Gradient and RMSProp.

Initially, Caffe implemented algorithms only for machine vision (based on convolutional neu-

ral networks), but later added support for recurrent neural networks in the form of LSTM. Now

it is possible to implement fully connected, recurrent, convolutional networks, deep autoencoders

and GAN. Transformer network implementation was not found.

1.2.3. Intel, Power, Nvidia platform optimizations

Intel provides Intel Distribution of Caffe – a version optimized for Intel processors [24]. This

version of Caffe uses Intel MKL-DNN, which, in its turn, allows you to use OpenMP by default.

Caffe2 worked together with Intel to integrate Intel MKL functions to optimize the perfor-

mance of the framework when used in production, but at the moment Caffe2 does not have full

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 61

MKL support. MKL still can be used with Caffe2, but some users had problems with neural

network training using Caffe2 with Intel MKL.

Caffe is included in PowerAI. There are two versions of Caffe in PowerAI: Caffe BVLC –

a standard version of Caffe developed in BVLC (Berkeley Vision and Learning Center); Caffe

IBM is an IBM-optimized version of the framework. The default version is Caffe IBM. Caffe2 is

included in PyTorch, which in turn is included in PowerAI.

Caffe and Caffe2 support CUDA and CuDNN, and also have containers in the Nvidia Cloud.

1.2.4. Multi-GPU training of neural networks

To use several GPUs for training in Caffe, you must use your own Caffe scripts; a complete

guide is provided in [4]. Synchronized distributed training is used. Asynchronous distributed

training, as well as model parallelism, are not supported.

You can use a special version of Caffe, NVCaffe, which is supported by NVidia. This version

was created specifically for the use of several GPUs. User instructions can be found in [35].

Caffe2 has a special distributed training module that implements various algorithms (for

example, SynchronousSGD) of synchronous distributed training models. Caffe2 uses NCCL for

synchronization, a communication library for multi-GPU nodes, which provides very good scala-

bility. An example of use is given on the official website for training the ResNet-50 neural network

both at several GPUs and at several nodes in [6]. A more general instruction is provided in [7].

Model parallelism in Caffe2 is possible, but manual distribution of neural network layers across

devices is required before training the model.

Caffe2 has no official support for asynchronous training.

1.2.5. Multi-node training of neural networks

When using Intel Distribution of Caffe, [19] provides guide on setting up and starting the

training process. Multi-node mode uses synchronized distributed training. For synchronization

after processing their data, the nodes use the Intel Machine Learning Scaling Library (MLSL)

for communication, which implements communication primitives for both model and data par-

allelism. But for multi-node training you need to configure the nodes separately, therefore the

problem: the user may not know which nodes his application will work on.

For HPC clusters with GPU nodes, Inspur developers developed a version of Caffe – Caffe

MPI [3] – which utilizes MPI to synchronize results between nodes after processing its part of

the data.

In Caffe2, similar to multi-GPU training, you can also run model training on multiple nodes.

You can select several communication backends to synchronize the results: Gloo and Redis. It

is also worth noting that it is necessary for all nodes to have a common shared folder through

which, after starting the program, the nodes can detect each other and start the training. More

detailed instructions for using this mode are given in the ResNet-50 training example in [6].

1.3. Torch

1.3.1. Overview

Torch [51] – MATLAB-like framework for the Lua programming language, which provides

a huge set of algorithms for deep learning. The core of the framework is written in C, but the

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

62 Supercomputing Frontiers and Innovations

programs themselves are written in Lua. LuaJIT is used for JIT compilation, which significantly

speeds up the program. Framework is distributed under the BSD license. Despite the fact that

Torch is a very powerful and convenient framework, programs for the framework must be written

in Lua. As noted in [31], Lua is not a popular programming language in the field of data science.

Users work around this problem by using the PyTorch package, which has an interface for Python

and not only includes all the functionality of Torch, but also complements it.

Torch is not in active development, as the team switched to PyTorch development. The

latest version, torch7, was released on February 27, 2017.

1.3.2. Implementation features and a list of supported algorithms

The core of the framework is in the torch package, in which there is a tensor implementation –

similar to TensorFlow, n-dimensional arrays, basic indexing operations, getting array slices,

transposing, etc., as well as BLAS operations, implementation of mathematical functions (max,

min, etc.) and statistical distributions.

The next important package is nn, which is used to build neural networks. The package

has many different parts, but every one of them has a common part called “Module”, which

implements the forward and backward functions, that allow you to make forward and backward

passes through the network. Modules can be connected using classes such as Sequential, Parallel,

Concat, which allows you to build complex models of neural networks. There is also a list of

basic modules, such as Tanh, Linear, Max, etc.

Error functions are implemented as subclasses of the Criterion class, which is similar to the

Module class, since it has the same forward and backward functions. Torch include implemen-

tations of the basic error functions, such as cross-entropy, mean squared error, and stochastic

gradient descent.

Torch allows you to implement all the most popular types of neural networks: fully con-

nected, convolutional, recurrent, deep autoencoders, GAN and Transformer.

1.3.3. Intel, Power, Nvidia platform optimizations

Torch has a separate development branch that has Intel optimizations, especially for Intel

Xeon. You can use Intel MKL in conjunction with Torch. The repository branch is located in [25].

Torch is included in the PowerAI framework.

Optimizations for the NVIDIA platform are included in cutorch – the CUDA backend for

Torch. Torch supports CUDA and cuDNN. Nvidia Cloud does not contain a container with an

optimized version of Torch.

1.3.4. Multi-GPU training of neural networks

Support for multiple GPUs is included in the standard version of Torch. To utilize multi-

GPU training, you need to use the module in nn – DataParallelTable – which allows you to

use data parallelism. Torch supports synchronous distributed training. It should be noted that

parallelization is done quite simply: you just need to wrap the Module that implements the

neural network in a DataParallelTable with the list of GPUs on which the training will be

conducted. A more detailed guide can be found in [9].

There is no official support for asynchronous training and model parallelism with Torch.

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 63

1.3.5. Multi-node training of neural networks

Torch does not have official support for distributed training on multiple nodes, but there is

a separate development branch, Torch MPI, which allows you to use nodes not only exclusively

with the CPU, but also with the GPU. More detailed information can be found in [46].

1.4. PyTorch

1.4.1. Overview

PyTorch [42] is a deep learning framework that was based on Torch and is developed pri-

marily by the Facebook’s artificial intelligence research group. PyTorch also includes the Caffe2

framework, so PyTorch has advanced distributed training capabilities.

Pytorch is currently under active development. The stable version, 1.3.0, was released on

October 10, 2019.

1.4.2. Implementation features and a list of supported algorithms

Due to the fact that PyTorch is based on Torch, they are very similar. The main module,

torch, includes tensors and operations (transformations, mathematical functions, etc.), serial-

ization operations.

The next important module that is used to build neural networks: torch.nn. This module

includes a description of the base class Module, which is inherited by all types of neural network

layers implemented in PyTorch (convolutional, pooling, linear, recurrent, etc.). The module

has implementations of a large number of activation functions (for example, ReLU6, sigmoid,

softsign, tanh, etc.), error functions (MSE, L1Loss, CrossEntropy, BCELoss, etc.). Each module

has, similar to Torch, forward and backward functions. The neural network itself is a Module

object, that is a combination of other Module, which allows to automatically make forward and

backward passes through the resulting network.

With PyTorch, you can implement almost all the types of architecture used in neural net-

works: fully connected, convolutional, recurrent, deep autoencoders, GAN, and Transformer.

1.4.3. Intel, Power, Nvidia platform optimizations

Intel optimizations mainly consists of integrating Intel MKL-DNN into PyTorch [22]. Prior

to version 1.0, the PyTorch distribution did not utilize Intel MKL-DNN, but now PyTorch

supports it by default.

IBM has included PyTorch in PowerAI, which uses OpenBLAS.

For NVidia, PyTorch is supported on Nvidia Cloud. It is also worth noting that there was a

collaboration between PyTorch and Nvidia, which resulted in Apex – A PyTorch Extension – a

set of utilities that make it easy to use distributed training technologies and Automatic Mixed

Precision. PyTorch supports CUDA and CuDNN.

1.4.4. Multi-GPU training of neural networks

Just like Torch, PyTorch has a DataParallel module in the nn package, and if you wrap a

neural network model in this module, then the training will be done on several GPUs. It uses

data parallelism and synchronous distributed training. Model parallelism is also possible: when

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

64 Supercomputing Frontiers and Innovations

defining a model, it is necessary to distribute the layers across different devices and implement

its forward and backward pass function, including data transfers between GPUs [43].

PyTorch has no official support for asynchronous training.

1.4.5. Multi-node training of neural networks

PyTorch has a DistributedDataParallel module that uses the torch.distributed package to

parallelize training across multiple processes/nodes. This module can be used in two modes:

1 process with several GPUs and several processes with 1 GPU. Developers do not recommend

using the use case with several GPUs, noting that the framework will work faster if you cre-

ate 1 process for each GPU. The module supports 2 backends for communication: gloo and

nccl. Developers recommend using the nccl backend, as it showed better performance in their

experiments.

In version 1.0, developers changed the core of the torch.distributed module, and now it

depends on the C10D library, which works asynchronously for all supported backends. It sped

up all of its dependent modules (DataParallel, DistributedDataParallel).

It is also worth noting that Horovod supports PyTorch. Instructions can be found in [20].

1.5. Apache MXNet

1.5.1. Overview

MXNet [1] is a popular deep learning framework known for its flexibility and ability to

scale across multiple GPUs and nodes. It is developed by a team from the Apache Software

Foundation and distributed under the Apache 2.0 license. The core is written mainly in C++;

there are interfaces for a large number of programming languages: C++, Python, R, MatLab,

JavaScript, Go, Scala, Perl, Julia, Wolfram Language. Due to its scalability, Amazon has chosen

MXNet for its AWS cloud environment. Like Caffe, MXNet has its own library of pre-trained

models - Gluon model zoo.

MXNet is currently under active development. The latest version, 1.5.0, was released on

June 8, 2019.

1.5.2. Implementation features and a list of supported algorithms

MXNet is similar to TensorFlow: it operates on NDArray (similar to a tensor, it is an n-

dimensional array) and a computation graph. Graphs include variables - objects whose type and

size are not determined during its initialization, but will be calculated as the data is fed into

the graph.

A neural network is built using the Module API, which implements almost all common types

of layers of neural networks, activation functions and optimizers.

MXNet has a higher level and simpler interface for creating neural networks - Gluon. Gluon

is very similar to Keras API in its simplicity of neural network creation. An initial guide to using

Gluon can be found in [2].

MXNet supports most popular neural network architectures such as fully connected, convo-

lutional, recurrent, deep autoencoder, GAN, and Transformer (using the GluonNLP extension).

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 65

1.5.3. Intel, Power, Nvidia platform optimizations

Intel and Apache MXNet released version 1.2.0, in which the main point was to optimize

MXNet for CPUs using Intel MKL-DNN, which significantly accelerated the work of the frame-

work. Detailed information about both the installation and how MXNet has accelerated can be

found in [17].

Authors could not find the information about optimizing the framework for the Power

architecture. MXNet is not part of PowerAI but installing MXNet is still possible.

For NVidia, MXNet is supported by Nvidia Cloud. MXNet also has support for CUDA and

CuDNN.

1.5.4. Multi-GPU training of neural networks

By default, data parallelism is used in MXNet, but model parallelism is also supported. [34]

provides an example of using several GPUs for parallelizing a LSTM model.

Data parallelism is quite simple. When initializing the module, it is necessary to give a

list of GPUs on which training will be conducted. There is also built-in support for static load

balancing: if one GPU is faster than another, then you can set the proportions in which the

GPUs will process the data. Detailed information on GPU parallelization can be found in [32, 33].

1.5.5. Multi-node training of neural networks

MXNet officially supports both asynchronous and synchronous distributed training. For

distributed training, MXNet uses three kinds of processes. The first of these is a worker in

which training will occur, and which can use multi-GPU training. The second process is called

the server (similar to the parameter server in Tensorflow), which stores the model parameters.

There can be several servers, and they can be located both on the machine with the worker or

on another machine. Servers store parameters in a key-value format. The third type of process

is the scheduler, which initializes the cluster and is responsible for ensuring that other processes

can interact with each other.

The training depends on which mode the server is created with. There are 4 modes:

dist sync – for synchronous training; dist async – for asynchronous training; dist sync device –

similar to dist sync, but is used for training on several GPUs, which allows to skip time-

consuming communications between the CPU and GPU and synchronize the results only between

GPUs (this method uses more memory on the GPU); dist async device – similar to dist async,

but is used for training on several GPUs.

If the communication becomes a bottleneck, you can use compression of the gradients to

reduce the load on the communication.

It is also worth noting that MXNet added integration with Horovod for distributed training

in 1.4.0 version.

1.6. PaddlePaddle

1.6.1. Overview

PaddlePaddle [36] is a deep learning framework introduced by Chinese search giant Baidu

in 2016. The main highlighted features are simplicity, scalability and flexibility. It is written in

C++, but it also has interfaces for C++, Python.

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

66 Supercomputing Frontiers and Innovations

PaddlePaddle is currently under development. The latest version, PaddlePaddle 1.5.1, was

released on July 16, 2019.

1.6.2. Implementation features and a list of supported algorithms

The main concept in PaddlePaddle, like TensorFlow, is a computation graph, but the op-

eration is different: in PaddlePaddle a Python program that describes a neural network model

builds a computation graph in protobuf format [41], and then sends it for execution to the so-

called Executor: either process responsible for distributed training, or to the libpaddle.so library

for local execution. A description of how the architecture works and what were the reasons for

such a design can be found in [45].

PaddlePaddle supports most of the neural network architectures used: convolutional, recur-

rent, fully connected, deep autoencoders, GAN, and Transformer.

1.6.3. Intel, Power, Nvidia platform optimizations

PaddlePaddle, like other frameworks, can use Intel MKL to speed up the framework on the

CPU and Intel MKL-DNN to speed up the convolutional neural networks.

Information about optimizing the library for the Power IBM architecture could not be found.

PaddlePaddle is supported on Nvidia Cloud and can also utilize CUDA and CuDNN.

1.6.4. Multi-GPU training of neural networks

PaddlePaddle has official support for multi-GPU training and has two ways to use it. The

first way is that ParallelExecutor is used instead of the usual Executor. PaddlePaddle uses

synchronous distributed training. Information on the implementation of asynchronous training

in official sources could not be found. More detailed instructions can be found in [39]. Developers

state that current version of Fluid provides only data parallelism training mode [38].

The second way is to compile the computation graph using CompiledProgram, which trans-

forms the graph for faster execution. Then you need to call with data parallel, which transforms

the graph so that several devices (in CPU mode, threads) can be used. PaddlePaddle auto-

matically detects all available GPU devices and distributes the work between them. Developers

recommend using this method. An example of usage can be found in [40].

1.6.5. Multi-node training of neural networks

PaddlePaddle has official multi-node support, and there are two possible uses. In case of the

RPC communication backend, training is based on the Trainer-ParameterServer architecture.

Both synchronous and asynchronous distributed training are supported. Trainer is engaged in

the training, and the ParameterServer is responsible for storing and modifying the model pa-

rameters. The peculiarity is that it is necessary to start the processes of parameter servers and

the training processes separately, in which it is necessary to specify the address and port of the

parameter server. DistributeTranspiler is used to distribute training, which, depending on how

many trainers and parameter servers, can give individual processes the computation graph that

they need. The output computation graphs also contain all the routines of synchronization and

parameter updates.

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 67

In case of NCCL communication backend, the parameter server is no longer needed, since

the trainers themselves are communicating and updating model parameters. All the examples

of multi-node training can be found in [38].

1.7. Microsoft Cognitive Toolkit

1.7.1. Overview

Microsoft Cognitive Toolkit [29] (hereinafter, CNTK) is a deep learning framework developed

by Microsoft Research. It is written in C++ and has interfaces in C++, Python and BrainScript.

The developers stopped developing this framework after version 2.7.0, released on March 29,

2019.

1.7.2. Implementation features and a list of supported algorithms

CNTK is similar to the Keras API in building neural networks. CNTK provides basic mod-

ules that implement the most used units in neural networks.

The cntk.layers module includes various types of layers of neural networks: recurrent, Em-

bedding, Dense, etc. Basic models, which consist of a sequence of layers of different or identical

types, can be built using Sequential. The cntk.learners module provides set of the most pop-

ular optimizers that are used in practice, such as SGD, Adam, Nesterov, RMSProp, etc. The

cntk.losses module implements error functions like binary cross-entropy, squared error, etc.

After constructing the neural network model from the provided blocks, it is necessary to

create a Trainer object, which receives the model at the input and the selected optimizer for

training the model. Then you can start training the model using train minibatch.

CNTK supports such types of neural network architectures as fully connected, convolutional,

recurrent, deep autoencoders, GAN and Transformer.

1.7.3. Intel, Power, Nvidia platform optimizations

Microsoft CNTK has two versions: CPU-only, which uses Intel MKL-DNN by default, and

a version with a GPU that uses CUDA (CUB and cuDNN).

The only mention authors found about CNTK for Power platform is in Keras docs: Keras

supports the CNTK backend.

CNTK is supported in the Nvidia Cloud.

1.7.4. Multi-GPU training of neural networks

CNTK has distributed training support. Synchronous (DataParallelSGD, BlockMomen-

tumSGD, ModelAveragingSGD) and asynchronous (DataParallelASGD) optimizers can be used.

The prerequisite for distributed training is that you need to install the MPI for communication

between processes. CNTK does not support other communication backends (for example, you

can use Gloo with Caffe2). It is worth noting that multi-GPU training on a node occurs through

MPI, where each process uses 1 GPU, and processes are communicating through MPI.

Parallelization is quite simple – after the definition of the selected optimizer, you need to

wrap it in data parallel distributed learner. A detailed guide to using the distributed CNTK

package can be found in [30].

CNTK does not support model parallelism.

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

68 Supercomputing Frontiers and Innovations

1.7.5. Multi-node training of neural networks

Multi-node training is completely same as the multi-GPU training, since MPI is used for

communication between processes for several GPUs as well as for several nodes.

1.8. Deeplearning4J

1.8.1. Overview

Deeplearning4j [10] (hereinafter, DL4J) is a deep learning framework written in Java. It has

interfaces for Java, Scala, Python (via Keras), Clojure. It is the first large-scale deep learning

library for Java, and provides a convenient and scalable interface for distributed training when

used with the default integration with Hadoop and Spark. DL4J needs an additional ND4J

library if the GPU computing is needed that implements CUDA. DL4J is distributed under the

Apache 2.0 license.

The development of the framework is quite slow. The latest stable version, 0.9.1, was released

on August 12, 2017, and there is also a beta version 1.0.0-BETA4.

1.8.2. Implementation features and a list of supported algorithms

There are two ways to work with the framework. The first way most people deal with when

they start working with this framework is the usage of MultiLayerNetwork. This is a high-level

API for building neural networks consisting of a sequence of layers of a certain type. The syntax

for this API is very similar to the Keras API.

The second method is the manual construction of a computation graph that describes the

architecture of the neural network. It is worth noting that everything that can be done through

MultiLayerNetwork can also be done by constructing a graph of calculations, but the config-

uration of this graph will be much more complicated. However, this approach allows you to

implement any desired network architecture.

For data processing, the DataVec module is included in the framework, which implements

almost all the necessary functions for loading, saving and converting data, and developers rec-

ommend its use wherever possible.

DL4J uses an additional ND4J library to work with tensors, which provides the ability to

work with n-dimensional arrays, as well as the ability to use not only CPUs for processing, but

also GPUs.

The framework supports most of the popular types of neural network architectures: con-

volutional, recurrent, fully connected, deep autoencoders. In DL4J there is no way to create a

GAN by your own means, but you can import the GAN model described in Keras. Transformer

implementation in DL4J could not be found.

1.8.3. Intel, Power, Nvidia platform optimizations

Like other frameworks, DL4J can utilize Intel MKL BLAS.

DL4J was optimized for Power platforms, the process of which is described in [11], but the

information is outdated, since the page to which the link had been provided in the article to the

optimized version of the library no longer exists.

NVidia GPUs can be used in DL4J via ND4J library, which supports the CUDA and cuDNN

libraries. DL4J is not supported in Nvidia Cloud.

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 69

1.8.4. Multi-GPU training of neural networks

DL4J supports multi-GPU training, and the parallelization process is quite simple and

transparent for the developer: after defining the model using, for example, MultiLayerNetwork,

you need to pass it to the ParallelWrapper and start the training process. This wrapper imple-

ments synchronous distributed training; synchronization of model parameters are implemented

in the wrapper. A detailed guide can be found in [16]. It is claimed that DL4J supports model

parallelism, but the authors could not find any guides.

1.8.5. Multi-node training of neural networks

Multi-node training, similarly to PaddlePaddle and MXNet, takes place according to the

parameter server - worker architecture, in which the worker processes their part of the data,

sends the results to the parameter server, which, after modifying the parameters, sends all

updated model parameters to everyone. All examples of usage provided on the official website

are designed to work on Spark clusters [12, 68].

1.9. Keras

1.9.1. Overview

Keras [50] is an open library used to work with neural networks that was written in Python.

The library was developed as part of the research efforts of the ONEIROS project and is an

add-on to other frameworks (front-end) for deep learning. The basic principle followed by the

developers is to make the interface between the developer and the backend as intuitive and

convenient as possible for quick development. Keras supports the following frameworks as a

backend: TensorFlow, Theano, CNTK, MXNet.

Keras is under active development. The latest version, 2.2.4, was released on October 3,

2018. In addition, Keras has been included with TensorFlow and has been recommended to use

as a high-level API since TF 2.0. The TensorFlow version of Keras includes a large number of

optimizations for TensorFlow that are not found in the standalone version of Keras.

1.9.2. Implementation features and a list of supported algorithms

There are two ways to build neural network models in Keras - using the Sequential class or

functional API.

Sequential is a tool for building neural networks in which layers go sequentially one after

another. Keras implements a large number of layers of neural networks, such as LSTM, layers for

convolutional neural networks (Conv1D, Conv2D, Conv3D), etc. After building the model, you

need to compile it: call the compile method with the specified optimizer and error function. Keras

provides an extensive set of implemented optimizers, such as SGD, Adam, Nadam, Adagrad,

RMSProp, etc.

Using the functional API makes it possible to implement more complex types of neural

networks in which layers can connect to each other arbitrarily, including several layers that

work in parallel. One example of using the functional API is to build a neural network with

multiple inputs. This neural network receives part of the input data at the input of the first

layer, and the next part of the input data is supplied to the neural network only after merging

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

70 Supercomputing Frontiers and Innovations

with the output of one of the internal hidden layers. A more detailed guide to the functional

API and examples of its use can be found in [18].

Keras supports most of the popular neural network architectures: convolutional, recursive,

fully connected, deep autoencoders, GAN and Transformer.

1.9.3. Intel, Power, Nvidia platform optimizations

Due to the fact that Keras is the interface between the developer and the backend, all the

optimizations applied to the framework chosen as the backend are also applicable to Keras.

At Nvidia Cloud Keras is available as part of the container with TensorFlow.

1.9.4. Multi-GPU training of neural networks

Keras officially supports multi-GPU training, but only with the TensorFlow backend using

the Distribution Strategy API.

It is also possible to use distributed training with the MXNet backend. To use the MXNet

backend, you must use the Keras version supported by MXNet developers [26]. When compiling

the model, it is necessary to pass context parameter to the input of the method, which contains

a list of GPUs on which training can be conducted. A more detailed usage guide is provided

in [44].

There is no support for model parallelism in Keras.

1.9.5. Multi-node training of neural networks

In Keras with the TensorFlow backend, multi-node training support is available in an exper-

imental mode with the MultiWorkerMirroredStrategy strategy. Alternatively, you can use the

Horovod framework, which has good support for Keras models.

2. Frameworks Comparison

2.1. Basic Comparison

Table 1 provides a comparison of frameworks by common parameters. The designations used

in the application: sync / async – support for synchronous / asynchronous distributed training,

“?” in the column about the availability of optimizations for the platform – the authors could

not find information on the highlighted items. A + in the column about the maximum number

of GPU / nodes on which training was started means that there is support for the specified

mode, but the authors could not find quantitative results.

In terms of the supported types of neural networks, the frameworks are very close. Almost

all frameworks, excluding only Caffe and DeepLearning4J, support the popular neural network

architectures: fully connected, recurrent, deep autoencoders, GAN, and Transformer. Caffe and

DeepLearning4J do not support architectures that have become popular relatively recently:

GAN and Transformer.

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 71

Table 1. Basic comparison of frameworks

Title

W
ri

tt
e
n

in

A
v
a
il

a
b
le

in
te

rf
a
c
e
s Supported types of

neural networks

S
u
p
p

o
rt

e
d

m
o
d
e
s

o
f

d
is

tr
ib

u
te

d
tr

a
in

in
g

D
is

tr
ib

u
te

d
tr

a
in

in
g

m
o
d
e
ls

T
h
e

m
a
x
im

u
m

n
u
m

b
e
r

o
f

G
P

U
/
n
o
d
e
s

o
n

w
h
ic

h
tr

a
in

in
g

w
a
s

ru
n

Optimizations for

C
N

N

R
N

N

D
A

E

D
A

E

T
ra

n
sf

o
rm

e
r

In
te

l

P
o
w

e
r

N
V

id
ia

C
U

D
A

/
N

v
id

ia
G

P
U

C
lo

u
d

TensorFlow
C++,
CUDA,
Python

Python,
C/C++,
Java, Go,
JS, R,
Julia, Swift

+ + + + +
Sync/
acync

Data
parallel,
model
parallel

8 / 644
+
(MKL BLAS
+ DNN)

+ +/+

Caffe C++
C++,
Python

+ + + + - sync
Data
parallel

256/645
+
(MKL BLAS
+ DNN)

+ +/+

Caffe2 C++
C++,
Python

+ + + + - sync

Data
parallel,
model
parallel

+/+
+
(MKL BLAS)

+ +/+

Torch C, Lua Lua, C + + + + +
Sync/
async

Data
parallel

256/646

+
(MKL BLAS
+ Xeon
optimizations)

+ +/-

PyTorch
Python,
C, Lua

Python + + + + + sync

Data
parallel,
model
parallel

8/8
+
(MKL-DNN)

+ +/+

MXNet C++

C++, JS,
Julia, Go,
Python,
R, Scala,
Perl,
Matlab

+ + + + +
Sync/
async

Data
parallel,
model
parallel

256/167 +
(MKL-DNN)

- +/+

PaddlePaddle
C++,
Python

Python + + + + + sync
Data
parallel

+/+
+
(MKL BLAS
+ DNN)

- +/+

Microsoft
Cognitive
Toolkit

C++
Python,
C++,
BrainScript

+ + + + +
Sync/
async

Data
parallel

8/8
+
(MKL-DNN)

- +/+

Deeplearning4j
C++,
Java

Java, Scala,
Clojure,
Python,
Kotlin

+ + + - - sync
Data
parallel

+/+
+
(MKL BLAS
+ DNN)

? +/-

Keras Python Python, R + + + + +
Sync/
async

8 Data
parallel

+/+9
+
(MKL BLAS
+ DNN)

+ +/-

Most of the frameworks are implemented in C++ for high performance but provide APIs

in many languages. The most popular API is for Python, which allows you to quickly develop

prototypes of neural networks. An exception is the Torch framework, which is written in C and

Lua and provides APIs in the same languages. However, Torch is now inferior in popularity to

PyTorch, which provides a Python API. Another exception is the DeepLearning4J framework,

which is written in Java and provides an API for languages that use the JVM. Thanks to this,

DeepLearning4J integrates well in distributed computing systems from the JVM ecosystem:

Hadoop and Spark.

All frameworks support synchronous distributed training, while TensorFlow, Torch, MxNet,

CNTK and Keras additionally support asynchronous. Also, all frameworks provide the possibility

of distributed training using data parallelism, and TensorFlow, Caffe2, MxNet and Pytorch –

using model parallelism. Thus, TensorFlow and MxNet have the advantage in the amount of

distributed training modes.

4by using Horovod [28]
5PowerAI, 4GPU/node
6PowerAI, 4GPU/node
716 entities of AWS P2.16x1
8Asynchronous training is only possible with pure TF after model conversion
9Distributed multi-node training through the use of pure TF or Horovod

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

72 Supercomputing Frontiers and Innovations

2.2. Scalability Comparison

In a review of frameworks for distributed deep learning [63], the authors looked into the

simplicity of parallelization, as well as performance on both several GPUs and several nodes. For

testing, the authors used the AWS P2.xlarge cloud platform, where each entity was equipped with

one NVIDIA Tesla K80 and four 2.7GHz Intel processors. For communication between nodes,

10Gbps Ethernet is used, which can greatly affect their performance, but the authors argue that if

all the training data was downloaded to the nodes beforehand, then this communication network

is sufficient to transfer model parameters. Authors selected CNTK, TensorFlow, Caffe2, MXNet,

and Chainer (not covered in this review). Also, OpenMPI 3.0.0 was used. All experiments were

conducted for the ResNet50 neural network; Cifar-10 and ImageNet were used as data for

training and testing.

As mentioned earlier, the article looked into the simplicity of the framework for distributed

training. The authors concluded that TensorFlow has the most complex architecture and par-

allelization methods for the user, which is why TensorFlow is excluded in some tests. There is

only one scenario with the CPU – for inference, all other scenarios use the GPU.

(a) Forward in CPU for Cifar-10 (b) Forward in GPU for Cifar-10 (c) Forward in GPU for ImageNet

Figure 2. Frameworks performance for image classification (inference, measured in images/sec)

(a) Forward+Backward in GPU for Cifar-10 (b) Forward+Backward in GPU for ImageNet

Figure 3. Frameworks performance on GPUs, measured in images/sec

As you can see in the figures above, Chainer loses everywhere in terms of performance. On

the CPU side, CNTK is clearly ahead of the competition in terms of performance, which shows

how much this framework is optimized for working on the CPU. On the GPU side, all frameworks

except Chainer show good performance, but you can highlight CNTK in the classification, and

MXNet in training – these frameworks showed the best results.

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 73

Figure 4. Performance with synchronous distributed multi-GPU training on Cifar-10

Figure 4 shows the performance of distributed multi-GPU training. In the version of Tensor-

Flow, used by the authors, it was necessary to manually implement the mechanism for updating

parameters after synchronization, which is why the authors excluded the framework from this

test. As you can see, CNTK and MXNet clearly stand out by showing near-linear acceleration

and having better performance. The scalability of Caffe2 is also good, but it lags behind due to

the training speed of 1 GPU, which is lower than that of competing frameworks.

(a) 8 nodes with asynchronous update (b) 8 nodes with synchronous update

(c) Fixed batch size of 128 with asynchronous up-

date
(d) Fixed batch size of 128 with synchronous

Figure 5. Performance with distributed multi-node training for ResNet-50 on Cifar-10

Figure 5 shows the results of multi-node training performance. The authors tested scalability

to just 8 nodes (1 GPU per node), but it still gives an idea of which framework scales better.

TensorFlow was excluded from the tests with synchronous training due to the lack of a ready-

made solution for this use case. As you can see from the graphs, MXNet is the clear leader,

which is far ahead of all the frameworks in all tests, showing scalability close to linear.

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

74 Supercomputing Frontiers and Innovations

Table 2. The processing speed of the batch on a different

number of GPUs for various neural network architectures,

in sec

of GK210

1 2 4

FCN-R

Caffe 0.239 0.131 0.094

CNTK 0.1811 0.111 0.072

TF 0.208 0.144 0.121

MXNet 0.184 0.104 0.86

Torch 0.165 0.110 0.112

AlexNet-R

Caffe 0.137 0.085 0.047

CNTK 0.108 0.062 0.037

TF 0.385 0.332 0.321

MXNet 0.122 0.070 0.041

Torch 0.141 0.077 0.046

ResNet-56

Caffe 0.378 0.254 0.177

CNTK 0.562 0.351 0.170

TF 0.523 0.291 0.197

MXNet 0.270 0.167 0.101

Torch 0.301 0.182 0.096

In terms of scalability, MXNet generally shows the best results. However, the authors also

checked the quality of the models in [63], since a higher speed of the framework does not mean

that the quality of the resulting model will be higher. The training speed of MXNet is 1.5+

times higher than that of TensorFlow; however, MXNet in 30 epochs cannot achieve the accu-

racy on the test set, which TensorFlow reaches in 5, which indicates a very fast convergence in

TensorFlow. Caffe2 can also be highlighted, which shows good convergence (the next after Ten-

sorFlow), but which in terms of training speed is very close to MXNet (faster than TensorFlow

by around 1.5 times).

A similar review was made in [67], where several neural network architectures were selected

and CNTK, MXNet, Caffe, Torch, and TF were tested. This article did not use multi-node

training, only multi-GPU training (maximum 4). The processing speed of one batch on several

GK210 GPUs is shown in Tab. 2. For AlexNet-R and ResNet-56, Cifar-10 was used as data,

for FCN-R – MNIST. According to the results, you can see that TF scales very poorly on this

platform. Torch and CNTK are the best in scalability, but despite this, Torch loses in speed to

both CNTK and MXNet.

In terms of the rates of convergence, authors drew a conclusion, that Torch and CNTK

successfully cope with FCN-R; MXNet with Torch show the best performance with AlexNet-R

and ResNet-56.

In [49] authors explored Power AI DDL, which shows the results of the IBM-Caffe and Torch

versions provided in PowerAI on ResNet-50 (ImageNet with 1K classes was used). The results

are shown in Tab. 3 and 4.

You can notice that these frameworks from PowerAI show very good scalability on Power

IBM platforms, and the frameworks were tested on a large number of nodes, which is very rare.

[28] shows the scalability of TF using the Horovod frontend for distributed training on two

neural network architectures: Inception V3 and ResNet-101. The results are presented in Fig. 6.

Details of what data and GPU are used were not indicated. It is worth noting that Horovod not

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 75

Table 3. Caffe multi-node training performance

#GPUs 4 8 16 32 64 128 256

#Nodes 1 2 4 8 16 32 64

Speedup 1.0 2.0 3.9 7.9 15.5 30.5 60.6

Scaling efficiency 1.00 1.00 0.98 0.99 0.97 0.95 0.95

Table 4. Torch multi-node training performance

#GPUs 4 16 64 96 128 192 256

#Nodes 1 4 16 24 32 48 64

Speedup 1.0 3.5 13.7 20.5 27.2 40.3 53.7

Scaling efficiency 1.00 0.86 0.86 0.85 0.85 0.84 0.84

(a) Inception V3 (b) ResNet-101

Figure 6. Multi-GPU distributed training performance of Horovod+TF

Table 5. Training speed comparison of PaddlePaddle and

other Deep Learning Frameworks on selected models, in

img/sec

SE-ResNeXt50 YOLOv3

Paddle 1.5.0 PyTorch 1.1.0 Paddle 1.5.0 MXNet

1 GPU 168.334 163.130 29.901 18.578

8 GPUs 843.348 595.274 58.175 35.574

DeepLab V3+ Transformer

Paddle 1.5.0 TensorFlow 1.12.0 Paddle 1.5.0 TensorFlow 1.12.0

1 GPU 13.695 6.4 4.865 4.750

8 GPUs 59.721 16.508 4.227 2.302

only provides more impressive results, but also has a more convenient and simple parallelization

interface than the default TensorFlow.

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

76 Supercomputing Frontiers and Innovations

Developers of PaddlePaddle benchmarked and compared their framework with PyTorch,

MXNet and TensorFlow [37]. They focused on testing single-node multi-gpu Distributed Train-

ing and used SE-ResNeXt50, Mask-RCNN, DeepLab V3+ etc. models for evaluation. It is worth

noting, that in every test PaddlePaddle is compared to only one of the competitors, eg. Py-

Torch for SE-ResNeXt50 and TensorFlow for DeepLab V3+. Table 5 shows the results of the

experiments. It is clear, that in these experiments PaddlePaddle is superior to all of the other

frameworks in terms of training speed, but it is hard to evaluate the quality of the trained

models, because developers did not consider the rate of convergence of the models.

In the case of PyTorch, developers provided scalability data in their talk at GTC 2019

(Fig. 7 and 8). As you can see, PyTorch shows very good scalability while increasing number of

nodes. Developers also noted that switching to the c10d backend accelerates training by 19%.

Figure 7. Pytorch 1.0 Distributed training performance on ResNet101 (NVIDIA V100)

Figure 8. Pytorch 1.0 Distributed training performance on FAIR Seq (NVIDIA V100)

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 77

Conclusions

Distributed training of neural networks is becoming increasingly popular. It not only allows

you to reduce the training time of a neural network, but also makes it possible to train large

neural networks that cannot be fit into the memory of one machine. However, not all deep learn-

ing frameworks manage to develop distributed training quickly enough: while Multi-GPU and

multithreaded training is present in all popular frameworks, the situation with distributed multi-

node training is much worse. There is a good support for distributed training in the frameworks

that were created with distributed training in mind: TensorFlow, MXNet and PadlePadle, as

well as PyTorch and DeepLearning4J (due to integration with the Spark infrastructure).

The most popular method of distributed training is synchronous training with data paral-

lelism. Tools for model parallelism have only recently begun to actively develop. There is Mesh

TensorFlow solution; PyTorch provides the ability to manually implement model parallelism.

Effective training on large supercomputers with a large number of nodes is impossible without

model parallelism. We can expect that active researches will be carried out and new frameworks

will appear in this area in the near future.

A large role is played not only by the performance and technical capabilities of the frame-

work, but also by the ease of use of distributed training. This is because in order to search for

a neural network that provides the necessary quality for solving the problem, it is necessary

to train a large number of neural networks with different architectures and hyperparameters.

Therefore, third-party libraries such as Horovod, which make distributed training using the

TensorFlow, PyTorch, and MXNet frameworks easy and convenient, are gaining popularity. The

TensorFlow framework is moving in the same direction, where in version 2.0 Keras has become

the recommended high-level API which has integrated all distributed training tools.

You can also speed up the search for the most suitable neural network architectures using

automated optimization tools for distributed hyperparameters, such as HyperOpt [48], Tune [61],

Keras Tuner [27], etc. Due to the growing popularity of distributed training of neural networks,

one can also expect the development of tools for distributed optimization of hyperparameters.

The process of consolidation of training frameworks for deep neural networks should not be

missed out, primarily based on frameworks with the support of large Internet companies with

large financial and computing resources: TensorFlow from Google and PyTorch from Facebook.

The Keras framework has been included into TensorFlow; Horovod is underway to be included

into the TensorFlow Distribution Strategy API [15]. PyTorch included the capabilities of the

classic Torch, and it also included the Caffe2 framework, which has powerful distributed training

tools. Other frameworks, unfortunately, do not develop in the field of distributed training as fast

as TensorFlow and PyTorch do. It is most likely that in the future the trend of consolidating

and including open projects for distributed training of neural networks and optimization of

hyperparameters into TensorFlow and PyTorch will continue.

Hardware architectures specially designed for training neural networks, such as Google’s

Tensor Processing Unit (TPU) [8], Graphcore’s Intelligence Processing Unit (IPU) [23], Ner-

vana [21] from Intel and others, are also of interest for the development of distributed training.

These architectures not only allow you to accelerate the training of neural networks, but also

significantly affect the development of deep learning frameworks. In particular, the Mesh Ten-

sorFlow library was developed on the assumption that it will work on an n-dimensional grid of

computing devices, which is typical for the cluster architecture on TPU [66]. The performance

and quality of training a neural network in Mesh TensorFlow was evaluated in a cluster with

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

78 Supercomputing Frontiers and Innovations

TPU. Although Mesh TensorFlow may work in a cluster with a different architecture, in that

case performance will be lower. It is likely that over time the integration of DL frameworks and

specialized equipment will become so deep and effective that it will become unprofitable to use

clusters with a CPU or GPU to train neural networks.

Acknowledgements

The results described in this paper were obtained with the financial support of the grant

from the Russian Federation President Fund (MK-2330.2019.9).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Apache MXNet. https://mxnet.apache.org/, accessed: 2019-12-03

2. Apache MXNet crash course. https://beta.mxnet.io/guide/crash-course/index.html,

accessed: 2019-12-03

3. Caffe-MPI for deep learning. https://github.com/Caffe-MPI/Caffe-MPI.github.io, ac-

cessed: 2019-12-03

4. Caffe, Multi-GPU usage. https://github.com/BVLC/caffe/blob/master/docs/

multigpu.md, accessed: 2019-12-03

5. Caffe2. https://caffe2.ai/docs, accessed: 2019-12-03

6. Caffe2, ResNet-50 training example. https://github.com/pytorch/pytorch/blob/

master/caffe2/python/examples/imagenet_trainer.py, accessed: 2019-12-03

7. Caffe2, Synchronous SGD. https://caffe2.ai/docs/SynchronousSGD.html, accessed:

2019-12-03

8. Cloud TPU. https://cloud.google.com/tpu/, accessed: 2019-12-03

9. Deep learning with multiple GPUs on Rescale: Torch. https://blog.rescale.com/

deep-learning-with-multiple-gpus-on-rescale-torch, accessed: 2019-12-03

10. Deeplearning4J. https://deeplearning4j.org, accessed: 2019-12-03

11. DeepLearning4J: Deep learning with Java, Spark and Power. https://www.ibm.com/

developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/

DeepLearning4J_Deep_Learning_with_Java_Spark_and_Power?lang=en, accessed:

2019-12-03

12. Distributed deep learning with DL4J and Spark. https://deeplearning4j.org/docs/

latest/deeplearning4j-scaleout-intro, accessed: 2019-12-03

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 79

https://mxnet.apache.org/
https://beta.mxnet.io/guide/crash-course/index.html
https://github.com/Caffe-MPI/Caffe-MPI.github.io
https://github.com/BVLC/caffe/blob/master/docs/multigpu.md
https://github.com/BVLC/caffe/blob/master/docs/multigpu.md
https://caffe2.ai/docs
https://github.com/pytorch/pytorch/blob/master/caffe2/python/examples/imagenet_trainer.py
https://github.com/pytorch/pytorch/blob/master/caffe2/python/examples/imagenet_trainer.py
https://caffe2.ai/docs/SynchronousSGD.html
https://cloud.google.com/tpu/
https://blog.rescale.com/deep-learning-with-multiple-gpus-on-rescale-torch
https://blog.rescale.com/deep-learning-with-multiple-gpus-on-rescale-torch
https://deeplearning4j.org
https://www.ibm.com/developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/DeepLearning4J_Deep_Learning_with_Java_Spark_and_Power?lang=en
https://www.ibm.com/developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/DeepLearning4J_Deep_Learning_with_Java_Spark_and_Power?lang=en
https://www.ibm.com/developerworks/community/blogs/fe313521-2e95-46f2-817d-44a4f27eba32/entry/DeepLearning4J_Deep_Learning_with_Java_Spark_and_Power?lang=en
https://deeplearning4j.org/docs/latest/deeplearning4j-scaleout-intro
https://deeplearning4j.org/docs/latest/deeplearning4j-scaleout-intro

13. Distributed deep learning with Horovod and PowerAI DDL. https://developer.ibm.

com/linuxonpower/2018/08/24/distributed-deep-learning-horovod-powerai-ddl/,

accessed: 2019-12-03

14. Distributed training in TensorFlow. https://www.tensorflow.org/guide/distribute_

strategy, accessed: 2019-12-03

15. Distribution strategy - revised API. https://github.com/tensorflow/community/blob/

master/rfcs/20181016-replicator.md, accessed: 2019-12-03

16. DL4J, parallel training. https://deeplearning4j.org/tutorials/

14-parallel-training, accessed: 2019-12-03

17. Getting started with Intel optimization for MXNet*. https://software.intel.com/

en-us/articles/getting-started-with-intel-optimization-for-mxnet, accessed:

2019-12-03

18. Getting started with the Keras functional API. https://keras.io/getting-started/

functional-api-guide/, accessed: 2019-12-03

19. Guide to multi-node training with Intel Distribution of Caffe. https://github.com/intel/

caffe/wiki/Multinode-guide, accessed: 2019-12-03

20. Horovod. https://github.com/uber/horovod, accessed: 2019-12-03

21. Intel Nervana neural network processors. https://www.intel.ai/nervana-nnp, accessed:

2019-12-03

22. Intel PyTorch. https://github.com/intel/pytorch, accessed: 2019-12-03

23. Intelligence processing unit. https://www.graphcore.ai/technology, accessed: 2019-12-

03

24. Intel Distribution of Caffe. https://github.com/intel/caffe, accessed: 2019-12-03

25. IntelSoftware Optimization for Torch. https://github.com/intel/torch, accessed: 2019-

12-03

26. Keras: Deep learning library for MXNet, TensorFlow and Theano. https://github.com/

dmlc/keras, accessed: 2019-12-03

27. Keras tuner. https://github.com/keras-team/keras-tuner, accessed: 2019-12-03

28. Meet Horovod: Ubers open source distributed deep learning framework for TensorFlow.

https://eng.uber.com/horovod/, accessed: 2019-12-03

29. Microsoft cognitive toolkit. https://www.microsoft.com/en-us/cognitive-toolkit, ac-

cessed: 2019-12-03

30. Microsoft cognitive toolkit, multiple GPUs and machines. https://docs.microsoft.com/

en-us/cognitive-toolkit/multiple-gpus-and-machines, accessed: 2019-12-03

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

80 Supercomputing Frontiers and Innovations

https://developer.ibm.com/linuxonpower/2018/08/24/distributed-deep-learning-horovod-powerai-ddl/
https://developer.ibm.com/linuxonpower/2018/08/24/distributed-deep-learning-horovod-powerai-ddl/
https://www.tensorflow.org/guide/distribute_strategy
https://www.tensorflow.org/guide/distribute_strategy
https://github.com/tensorflow/community/blob/master/rfcs/20181016-replicator.md
https://github.com/tensorflow/community/blob/master/rfcs/20181016-replicator.md
https://deeplearning4j.org/tutorials/14-parallel-training
https://deeplearning4j.org/tutorials/14-parallel-training
https://software.intel.com/en-us/articles/getting-started-with-intel-optimization-for-mxnet
https://software.intel.com/en-us/articles/getting-started-with-intel-optimization-for-mxnet
https://keras.io/getting-started/functional-api-guide/
https://keras.io/getting-started/functional-api-guide/
https://github.com/intel/caffe/wiki/Multinode-guide
https://github.com/intel/caffe/wiki/Multinode-guide
https://github.com/uber/horovod
https://www.intel.ai/nervana-nnp
https://github.com/intel/pytorch
https://www.graphcore.ai/technology
https://github.com/intel/caffe
https://github.com/intel/torch
https://github.com/dmlc/keras
https://github.com/dmlc/keras
https://github.com/keras-team/keras-tuner
https://eng.uber.com/horovod/
https://www.microsoft.com/en-us/cognitive-toolkit
https://docs.microsoft.com/en-us/cognitive-toolkit/multiple-gpus-and-machines
https://docs.microsoft.com/en-us/cognitive-toolkit/multiple-gpus-and-machines

31. The most popular language for machine learning and data science is ... https://www.

kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.

html, accessed: 2019-12-03

32. MXNet, training on multiple GPUs with gluon. https://gluon.mxnet.io/chapter07_

distributed-learning/multiple-gpus-gluon.html, accessed: 2019-12-03

33. MXNet, training with multiple GPUs from scratch. https://gluon.mxnet.io/chapter07_

distributed-learning/multiple-gpus-scratch.html, accessed: 2019-12-03

34. MXNet, training with multiple GPUs using model parallelism. https://mxnet.apache.

org/api/faq/model_parallel_lstm, accessed: 2019-12-03

35. NVCaffe. https://docs.nvidia.com/deeplearning/frameworks/caffe-user-guide/

index.html#pullnvcaffe, accessed: 2019-12-03

36. PaddlePaddle. https://github.com/PaddlePaddle/Paddle, accessed: 2019-12-03

37. PaddlePaddle benchmark. https://github.com/PaddlePaddle/benchmark, accessed:

2019-12-03

38. PaddlePaddle, manual for distributed training with fluid. https://www.paddlepaddle.

org.cn/documentation/docs/en/1.5/user_guides/howto/training/cluster_howto_

en.html#training-in-the-parameter-server-manner, accessed: 2019-12-03

39. PaddlePaddle, parallel executor. https://www.paddlepaddle.org.cn/documentation/

docs/en/1.6/api_guides/low_level/parallel_executor_en.html, accessed: 2019-12-

03

40. PaddlePaddle, single-node training. https://www.paddlepaddle.org.cn/documentation/

docs/en/1.5/user_guides/howto/training/single_node_en.html, accessed: 2019-12-

03

41. Protocol buffers. https://developers.google.com/protocol-buffers/, accessed: 2019-

12-03

42. PyTorch. https://pytorch.org/, accessed: 2019-12-03

43. PyTorch, model parallel best practices. https://pytorch.org/tutorials/intermediate/

model_parallel_tutorial.html, accessed: 2019-12-03

44. Scaling Keras model training to multiple GPUs. https://devblogs.nvidia.com/

scaling-keras-training-multiple-gpus/, accessed: 2019-12-03

45. TensorFlow Roadmap. https://www.tensorflow.org/community/roadmap, accessed:

2019-12-03

46. TorchMPI. https://github.com/facebookresearch/TorchMPI, accessed: 2019-12-03

47. Abadi, M., Barham, P., Chen, J., et al.: TensorFlow: A system for large-scale machine learn-

ing. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI

16). pp. 265–283 (2016), https://www.usenix.org/system/files/conference/osdi16/

osdi16-abadi.pdf

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 81

https://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.html
https://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.html
https://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.html
https://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-gluon.html
https://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-gluon.html
https://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-scratch.html
https://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-scratch.html
https://mxnet.apache.org/api/faq/model_parallel_lstm
https://mxnet.apache.org/api/faq/model_parallel_lstm
https://docs.nvidia.com/deeplearning/frameworks/caffe-user-guide/index.html#pullnvcaffe
https://docs.nvidia.com/deeplearning/frameworks/caffe-user-guide/index.html#pullnvcaffe
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/benchmark
https://www.paddlepaddle.org.cn/documentation/docs/en/1.5/user_guides/howto/training/cluster_howto_en.html#training-in-the-parameter-server-manner
https://www.paddlepaddle.org.cn/documentation/docs/en/1.5/user_guides/howto/training/cluster_howto_en.html#training-in-the-parameter-server-manner
https://www.paddlepaddle.org.cn/documentation/docs/en/1.5/user_guides/howto/training/cluster_howto_en.html#training-in-the-parameter-server-manner
https://www.paddlepaddle.org.cn/documentation/docs/en/1.6/api_guides/low_level/parallel_executor_en.html
https://www.paddlepaddle.org.cn/documentation/docs/en/1.6/api_guides/low_level/parallel_executor_en.html
https://www.paddlepaddle.org.cn/documentation/docs/en/1.5/user_guides/howto/training/single_node_en.html
https://www.paddlepaddle.org.cn/documentation/docs/en/1.5/user_guides/howto/training/single_node_en.html
https://developers.google.com/protocol-buffers/
https://pytorch.org/
https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html
https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html
https://devblogs.nvidia.com/scaling-keras-training-multiple-gpus/
https://devblogs.nvidia.com/scaling-keras-training-multiple-gpus/
https://www.tensorflow.org/community/roadmap
https://github.com/facebookresearch/TorchMPI
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

48. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: Hyperparameter

optimization in hundreds of dimensions for vision architectures. In: Proceedings of the

30th International Conference on International Conference on Machine Learning - Volume

28. pp. I–115–I–123. ICML’13, JMLR.org (2013), http://dl.acm.org/citation.cfm?id=

3042817.3042832

49. Cho, M., Finkler, U., Kumar, S., et al.: Powerai DDL. CoRR abs/1708.02188 (2017), http:

//arxiv.org/abs/1708.02188

50. Chollet, F., et al.: Keras. https://keras.io (2015)

51. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A Matlab-like environment for ma-

chine learning. In: BigLearn, NIPS Workshop (2011)

52. Dean, J., Corrado, G.S., Monga, R., et al.: Large scale distributed deep networks. In:

Proceedings of the 25th International Conference on Neural Information Processing Systems

- Volume 1. pp. 1223–1231. NIPS’12, Curran Associates Inc., USA (2012), http://dl.acm.

org/citation.cfm?id=2999134.2999271

53. Devlin, J., Chang, M., Lee, K., et al.: BERT: pre-training of deep bidirectional transformers

for language understanding. CoRR abs/1810.04805 (2018), http://arxiv.org/abs/1810.

04805

54. Goyal, P., Dollár, P., Girshick, R.B., et al.: Accurate, large minibatch SGD: training Ima-

geNet in 1 hour. CoRR abs/1706.02677 (2017), http://arxiv.org/abs/1706.02677

55. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. CoRR

abs/1512.03385 (2015), http://arxiv.org/abs/1512.03385

56. Huang, X., Baker, J., Reddy, R.: A historical perspective of speech recognition. Commun.

ACM 57(1), 94–103 (Jan 2014), DOI: 10.1145/2500887

57. Jia, Y., Shelhamer, E., Donahue, J., et al.: Caffe: Convolutional architecture for fast feature

embedding. arXiv preprint arXiv:1408.5093 (2014)

58. Johnson, M., Schuster, M., Le, Q.V., et al.: Google’s multilingual neural machine translation

system: Enabling zero-shot translation. CoRR abs/1611.04558 (2016), http://arxiv.org/

abs/1611.04558

59. Krizhevsky, A., Sutskever, I., Hinton, et al.: ImageNet classification with deep convolutional

neural networks. Commun. ACM 60(6), 84–90 (May 2017), DOI: 10.1145/3065386

60. Kurth, T., Zhang, J., Satish, N., et al.: Deep learning at 15PF: Supervised and semi-

supervised classification for scientific data. CoRR abs/1708.05256 (2017), http://arxiv.

org/abs/1708.05256

61. Liaw, R., Liang, E., Nishihara, R., et al.: Tune: A research platform for distributed model

selection and training. CoRR abs/1807.05118 (2018), http://arxiv.org/abs/1807.05118

62. Litjens, G.J.S., Kooi, T., Bejnordi, B.E., et al.: A survey on deep learning in medical image

analysis. CoRR abs/1702.05747 (2017), http://arxiv.org/abs/1702.05747

Survey on Software Tools that Implement Deep Learning Algorithms on Intel/x86 and...

82 Supercomputing Frontiers and Innovations

http://dl.acm.org/citation.cfm?id=3042817.3042832
http://dl.acm.org/citation.cfm?id=3042817.3042832
http://arxiv.org/abs/1708.02188
http://arxiv.org/abs/1708.02188
https://keras.io
http://dl.acm.org/citation.cfm?id=2999134.2999271
http://dl.acm.org/citation.cfm?id=2999134.2999271
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1145/2500887
http://arxiv.org/abs/1611.04558
http://arxiv.org/abs/1611.04558
http://dx.doi.org/10.1145/3065386
http://arxiv.org/abs/1708.05256
http://arxiv.org/abs/1708.05256
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1702.05747

63. Liu, J., Liu, J., Dutta, J., et al.: Usability study of distributed deep learning frameworks

for convolutional neural networks (2018)

64. Radford, A., Wu, J., Child, R., et al.: Language models are unsupervised multitask

learners (2018), https://d4mucfpksywv.cloudfront.net/better-language-models/

language-models.pdf

65. Sergeev, A., Balso, M.D.: Horovod: fast and easy distributed deep learning in TensorFlow.

arXiv preprint arXiv:1802.05799 (2018)

66. Shazeer, N., Cheng, Y., Parmar, N., et al.: Mesh-TensorFlow: Deep learning for supercom-

puters. CoRR abs/1811.02084 (2018), http://arxiv.org/abs/1811.02084

67. Shi, S., Wang, Q., Xu, P., Chu, X.: Benchmarking state-of-the-art deep learning software

tools. CoRR abs/1608.07249 (2016), http://arxiv.org/abs/1608.07249

68. Strom, N.: Scalable distributed DNN training using commodity GPU cloud computing. In:

INTERSPEECH Interspeech (2015)

69. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. CoRR abs/1409.4842

(2014), http://arxiv.org/abs/1409.4842

70. Wang, L., Chen, Z., Liu, Y., et al.: A unified optimization approach for CNN model inference

on integrated GPUs. CoRR abs/1907.02154 (2019), http://arxiv.org/abs/1907.02154

71. Xiong, W., Droppo, J., Huang, X., et al.: The Microsoft 2016 conversational speech recog-

nition system. CoRR abs/1609.03528 (2016), http://arxiv.org/abs/1609.03528

D. Shaikhislamov, A. Sozykin, Vad. Voevodin

2019, Vol. 6, No. 4 83

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://arxiv.org/abs/1811.02084
http://arxiv.org/abs/1608.07249
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1907.02154
http://arxiv.org/abs/1609.03528

	D. Shaikhislamov, A. Sozykin, Vad. Voevodin

