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In the paper, we review a suboptimal methodology of mapping of a task information graph

on the architecture of a reconfigurable computer system. Using performance reduction methods,

we can solve computational problems which need hardware costs exceeding the available hardware

resource. We proved theorems, concerning properties of sequential reductions. In our case, we have

the following types of reduction such as the reduction by number of basic subgraphs, by number

of computing devices, and by data width. On the base of the proved theorems and corollaries,

we developed the methodology of reduction transformations of a task information graph for its

automatic adaptation to the architecture of a reconfigurable computer system. We estimated the

maximum number of transformations, which, according to the suggested methodology, are needed

for balanced reduction of the performance and hardware costs of applications for reconfigurable

computer systems.
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Introduction

Most researchers of parallel computing [1–4] admit that parallel programming is a complex

area. It is necessary to organize and control a large number of processes that asynchronously

run on the nodes of a multiprocessor computer system (MCS). The demanding requirements

are decreasing of the calculation time and increasing of the results accuracy. To fulfill these

requirements, we increase the number of nodes of a multiprocessor computer system, but at the

same time, development of parallel programs becomes more complex.

For a long time, we believed that it is possible to cope with the growing complexity of

parallel program development with the help of automatic parallelization of sequential processor

(procedural) programs. In this case, a parallelizing compiler [1, 2, 5–10] receives an imperative

processor program, reconstructs the natural parallel structure of its initial algorithm, detects its

fragments for concurrent execution (e.g. loop iterations suitable for parallelization), and adds

all necessary instructions. However, the automatic parallelization of sequential programs is a

computationally expensive problem with an extremely large number of variants for analysis.

The parallelizing compiler has to analyze different variants of multiple fragments of the

procedural program. At the same time, it analyses distribution of data among the nodes of

the multiprocessor computer system according to its switching network. These two reasons

complicate automatic parallelization for clusters that are the most widely used multiprocessor

computer systems with distributed memory.

Let us have a cluster computer system, which consists of n nodes, and each node processes its

local part of data. In this case, we describe the data distribution among the nodes using an n-ary

tree. According to the Cayley theorem, we estimate the number of variants of data distribution

as the number of different trees for n vertices, i.e. nn−2. For example, the cluster MCS consists of

64 nodes. So, the number of possible distribution variants is 6462 = 2372. Analysis of such num-

ber of variants on any existing computer system and during any reasonable time is impossible.
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Therefore, the most part of research in this problem domain was devoted to heuristic methods

of search space reduction (e.g. the analysis of information dependencies [1], loop nests and it-

erations [4–6], private and reduction variables [7, 8], canonization, loop unrolling/unwinding,

loop fusion, loop distribution [9, 10], etc.). Formal transformations and heuristic methods, de-

veloped for rejection of inefficient parallel program variants [3], require some recommendations

and instructions given by the programmer; otherwise, they cannot provide efficient automatic

parallelization of any procedural program.

Nowadays, multi-chip reconfigurable computer systems (RCS) [11] with field-programmable

gate arrays (FPGAs) are widely used for solving of computationally expensive problems in

various fields of science and technology. RCSs contain multiple FPGAs of a large logical capacity.

The FPGAs are connected by a spatial switching system into a single computational field.

Within such computational field, we implement calculations as a computing structure [12–14]

and decrease the solution time [15, 16] by one or two orders of magnitude at the considerably

lower (by a factor of 6–8) processing rate. For certain problem domains [17, 18], RCSs are

considerably superior in real performance and power efficiency in contrast with cluster MCSs.

In the paper, we consider a theory which helps to reduce the number of variants parallel

calculations for analysis and further synthesis of a computing structure for an RCS. We represent

a task as an information graph and then, using performance reduction methods and a relatively

small number of steps, we transform it into the form, similar to the architecture of an RCS.

For most applications, it is possible to synthesize computing structures and to increase the task

solution time owing to the performance reduction methods. In this case, the efficiency of the

designed structures is not less than 50 % in comparison with those designed by circuit engineers.

Let us review the structure of the paper. In the first section we describe the forms of parallel

calculations, and the task information graph used for structural and procedural calculations on

the RCS. In the second section, we consider performance reduction as a way of implementing of

the task information graph on the RCS with the lack of its hardware resource. In the third section,

we represent the performance reduction methods for decreasing of hardware costs, required for

implementing of the information graph, and prove theorems on the applicability of reduction

transformations. In the fourth section, we represent the performance reduction principles for

mapping of the task information graph on the RCS architecture. Besides, here we estimate

the number of computing structures that are to be analysed for adaptation of the initial task

information graph to the architecture and hardware resource of the RCS. In the fifth section, we

describe the rules, according to which we use the reduction transformations in an experiment

for verification of our performance reduction methods. The rules were used in tools for parallel

application development. In the conclusion we generalize our results and discuss the directions

of our future research.

1. Forms of Calculations

According to the form of calculations, we can reveal the natural parallelism of the task [1, 19].

As a result, it simplifies the task solution and scaling. Usually, parallel calculations are repre-

sented in two most common forms – an algorithmic diagram (a flowchart) and a graph [1, 19].

According to the algorithmic diagram [1], calculations are a control transfer among computing

devices. Besides, the algorithmic diagram defines the order (or the sequence) of operations per-

formed by a computing device (or devices) using processor instructions. Generally, the algorith-

mic diagram is the task flowchart or pseudocode, but sometimes it is a control flow graph [1, 5, 8]
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When we represent calculations as a graph, we describe a task or its fragment in an abso-

lutely parallel form, i.e. as an acyclic oriented graph with input, output, and operation vertices

connected by arcs according to the data processing order (but not according to the control

transfer). There are various forms of graph models for computational tasks such as algorithm

graphs [1], information graphs [1, 19], dependency and influence graphs, and lattice graphs [1].

Arcs of a graph show, how arguments of operation vertices depend on results of calculations,

performed by other operation vertices, or arguments, received from input vertices. This is an

information connection (or information dependence) that describes relations between two ver-

tices of a graph when the output argument of each vertex is the input of another one. If we

speak about multiprocessor architectures [1], then information dependence between two oper-

ators means addressing to the same memory cell during their execution. If we speak about

dataflow architectures, then it means addressing to one and the same element of a flow.

The most common forms are an algorithm graph [1] and an information graph [1, 19].

The algorithm graph describes a computational task as a set of simple operations (addition,

multiplication, division, etc.) distributed into levels. Although, it is possible to use complex

composite operations (macro operations) as level vertices [1]. All vertices of the algorithm graph,

represented in the canonical parallel form, are distributed into numbered subsets, which form

levels. Here, the first vertex of each arc belongs to the level, whose number is less than the

number of the level, which contains the last vertex. Besides, arcs cannot connect vertices which

belong to the same level.

The theory of structural and procedural calculations [19] deals with a task information graph

(TIG). In contrast to the parallel forms of an algorithm graph, the task information graph is a

combination of layers and iterations. A layer consists of isomorphic, functionally complete, and

information independent subgraphs of a task instead of operation vertices. Iterations describe

dependencies among processing data over time without considering latency. Subgraphs from one

and the same layer are information independent, i.e. not connected by arcs. Subgraphs, which

belong to different iterations, depend on processing data. The number of isomorphic subgraphs

in a layer is similar to the level width of the canonical parallel form, and the number of iterations

is similar to its height, if we consider isomorphic subgraphs as macro-operations. In comparison

with an algorithm graph, a TIG describes a task at a higher level of hierarchy. In this case,

we use separate operations, but subgraphs which consist of several operations. The information

graph describes the absolutely parallel form of the task. The task parameters define the number

of iterations. Therefore, the TIG has no dataflows.

A structural implementation of a TIG on a computer system provides the highest perfor-

mance. In this case, the number of devices is equal to the number of operation vertices (or

operations) of a solving task, and the number of input/output arcs is equal to the number of

external memory channels. For the majority of applications, such structural implementation of a

TIG is impossible, because the number of devices and channels in any RCS is limited. Therefore,

if we map a TIG on a real RCS with its limited hardware resource, we transform this TIG into

a computing structure with the lower performance and lower requirements for the number of

channels, the number of concurrently functioning devices, and/or the data width in comparison

with the structural implementation of this TIG.

A TIG (or its subgraph) describes the logical structure of calculations as vertices and arcs.

To implement the TIG on an RCS means to create its computing structure, which consists

of hardware-programmed devices with timing characteristics such as latency, data processing
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Figure 1. Transformation of a TIG into the computational structure via layer- and iteration-

scalable form

interval, clock rate, etc. We assume, that the term “implementation of a subgraph on a computer

system” means a computing structure which consists of hardware-programmed devices with

timing characteristics (or so-called timing component).

Figure 1 shows the transformation a TIG for its structural implementation on an RCS.

To transform the absolutely parallel form of a TIG into the layer- and iteration-scalable

form, we obtain the functionally regular form [19] with functions of layer mapping between

iterations Φi, and functions of isomorphic subgraph ordering in a layer Fij :

G = Φ(Fij(gij)), (1)

where gij is a basic subgraph (a pipeline computing structure); Fij is an ordering function

for information-independent subgraphs in a computational layer; Φi is a mapping function of

information-dependent layers. The composition of functions Fij and Φi depends on an available

RCS hardware resource ARCS .

Figure 2 shows the task information graph, which consists of information-dependent

layers S1, ..., SN . Each layer consists of isomorphic information-independent subgraphs

G1,1, ..., G1,M , ...GN,M .

Owing to such form, we easily scale the task computing structure. If we change the number of

basic subgraphs gij in the composition of the functions Fij and Φi, then we scale the computing

structure both by layers and by iterations. If we increase the number of hardware-programmed

information-independent subgraphs within the layer, then we scale the computing structure by

layers. If we increase the number of hardware-programmed subgraphs with information depen-

dence among iterations, then we scale the computing structure by iterations.
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Figure 2. The information graph, its layers Fij and iterations Φi

A basic subgraph gij is a minimal indivisible element of a task. When its computing structure

is mapped on an RCS, it is completed with functions of reading, writing, and recursion, derived

from Fij and Φi functions. The obtained indivisible program structure is called a cadr. For all

obtained cadrs we specify an order relation, which, together with the von-Neumann determinism,

define the execution sequence of cadrs according to their control program.

A basic subgraph is a functionally completed fragment of a TIG. It consists of subgraphs

of one or several subtasks. It is possible to map any basic subgraph on an available RCS hard-

ware resource. Completed with the synthesized read/write functions, a basic subgraph provides

solution of a task. Within the theory of structural and procedural calculations, basic subgraphs

are selected according to available hardware resource. In this case, selection criteria are not

formalized; they are determined by the structure of a task, by available resource, and by the

developers experience. To select a basic subgraph, the developer analyzes the TIG and looks for

frequently used fragments of the TIG which are typical for a certain problem area. Here are the

examples of such frequently used fragments:

• addition, multiplication, and division of matrix elements (linear algebra);

• calculations in mesh points (mathematical physics);

• round transformations with logical “AND”, “OR”, “exclusive OR”, and fixed-size data

block offset (symbolic processing);

• the discrete fast Fourier transform operation (digital image and signal processing).

Usually, these standard fragments form basic subgraphs of various tasks. We can select basic

subgraphs in procedural programs, using descriptions of loops, because fragments with cyclic

processing correspond to functional subgraphs, i.e. to calculations with specified scaling functions

by layers Fij and by iterations Φi. Here, the operators of a loop body are a basic subgraph.

Information dependencies among operators, and cycle description determine the functions of

layers Fij and by iterations Φi. As a rule, any basic subgraph consists of multiple functional

subgraphs, and is a broader concept. However, for some tasks a functional subgraph and a basic

one are the same.
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2. Mapping of Information Graphs on Reconfigurable

Computer Systems

The available hardware resource ARCS defines not only mapping functions Fij and Φi, but

also the calculations of the basic subgraph. That is why, we can represent (1) as

G(ARCS) = Φpar
ARCS◦ Φpipe(Fpar

ARCS◦ Fpipe(gstr
ARCS◦ gproc)), (2)

where “par” and “pipe” mean parallel and pipeline execution, respectively; gstr is the struc-

tural form of the basic subgraph; gproc is the procedural form of the basic subgraph;
ARCS◦ is

composition of scaling functions, which depends on the available hardware resource ARCS .

Using the dependence between the basic subgraph and the available hardware resource (2),

we can describe not only extreme variants of completely structural (gstr) and completely proce-

dural (gproc) calculations, but other intermediate ones. However, we cannot obtain the structural

form gstr for some tasks due to hardware resource limitations, and the procedural form cannot

provide results of adequate accuracy in reasonable time. The examples of such tasks are:

• molecular simulation (docking of inhibitors);

• synthesis of new chemical compounds;

• 3D simulation of spatial physical processes (e.g. tomography of the Earth surface);

• high-resolution simulation of physical processes;

• symbolic processing, etc.

Tasks with variable data flow density [20] belong to this type also. For such tasks, the

amount of processed data in various TIG subtasks may differ by 2–4 decimal places, and may

depend on input data. For such tasks, basic subgraphs from different layers are significantly non

isomorphic. If we try to transform them into isomorphic subgraphs, using the union operation,

then we need an inaccessible hardware resource for their structural (or structural-procedural)

variant. Hence, we cannot solve these tasks using structural, structural-procedural, or procedural

calculations.

If we want to solve these tasks during some reasonable time and using some available hard-

ware resource, it is necessary to reduce the hardware costs for gstr, not using the completely

procedural variant gproc, in order to create the basic subgraph within an RCS, and to provide the

specified task performance. Here, the task performance is lower than the one for the structural

variant gstr, but higher than the one for the procedural variant gproc.

Therefore, we consider a basic subgraph as a scalable, not an atomic object of a task. If we

reduce the performance and hardware costs, then it is possible to fulfill all requirements of the

task and solve it.

For the first time [20], it was suggested to use performance reduction methods for decreasing

of hardware costs in case, when RCS hardware resource is insufficient for even one basic sub-

graph. The main effect of performance reduction is a linear increase of the task solution time,

proportional to the reduction coefficient. The main reduction transformations, which provided

balanced scaling of molecular docking tasks in [20], are the following:

• RN – the reduction by number of basic subgraphs. It decreases the number of computing

structures, simultaneously mapped on RCS.

• ROp – the reduction by number of computing devices. It decreases the number of concur-

rently performed operations of the basic subgraph. Similar operations and data of similar
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types are combined in one device. Besides, new connections for operands synchronizations

are synthesized.

• Rρ – the reduction by data width. It decreases the number of concurrently processed digits.

Absolutely parallel processing of digits in each operand is transformed in partly parallel

or sequential processing.

• RS – the reduction by data processing interval. It increases the data processing/supply in-

terval; the hardware costs remain unchanged. This type of reduction is used for matching of

data flow with different density among different subtasks or information graph fragments.

• RFreq – the reduction by clock rate. It decreases the clock rate of a computing structure,

which implements some information graph fragment, and matches data flows with different

density.

In [20], all reduction transformations were used to reduce hardware costs for solution of

some task. However, we can consider the methods of performance reduction as transformations,

which provide scaling of a TIG as a computing structure for further mapping on RCS architec-

ture. Moreover, we often use the reduction transformations to get a computing structure from

the absolutely parallel form of a task. As a result, the performance of the obtained computing

structure is lower, but the structure requires less number of channels and simultaneously oper-

ating devices, and/or less data width. That is why we may consider the computing structure of

a TIG, mapped on RCS architecture, as performance reduction. Of course, this is true only in

case, when RCS hardware resource is insufficient for task solution.

We efficiently use the methods of performance and hardware costs reduction for information

graph mapping on RCS architectures. These methods provide automatic (without the program-

mers instructions) adaptation of applications to various RCS architectures, and solve the problem

of application portability.

3. Methods of Performance and Hardware Costs Reduction

The task solution performance is a number of computing operations performed per time

unit during execution of an application. Let us have a computing structure F with NF basic

subgraphs. Each basic subgraph contains OpF computing devices, which process data of a ρF

width. The total number NCF of computing operations, required for processing of a data flow

with a length N , is

NCF = N ·NF ·OpF · ρF . (3)

The task solution time for a computing device with a clock period τ = 1/Freq and with an

interval S is t = N · S · τ . Here, the data processing interval is measured in cycles. Then, the

performance of the computing structure F is defined as

PerfF =
NCF
t

=
N ·NF ·OpF · ρF

N · S · τ =
NF ·OpF · ρF

S · τ =
NF ·OpF · ρF · Freq

S
. (4)

If we carry out the performance reduction with the integer reduction coefficient R, then the

performance (2) is reduced by R times:

PerfF (R) =
PerfF
R

=
NF ·OpF · ρF
S · τ ·R =

NF ·OpF · ρF · Freq
S ·R . (5)

The balance of a result computing structure is one of the main and the most important

distinction of the performance reduction methods. It means that data flows and hardware costs
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for their switching and synchronization are multiply scaled. Concerning (5), it means that the

cofactors of the numerator are reduced by the reduction coefficient R (or by its prime cofactors).

According to (5), we can reduce the performance of a task computing structure by:

• decreasing of the number NF of hardware-programmed basic subgraphs in proportion to

R (or its prime cofactors). For each mapped BS, the length N of its processed data flow

increases. This method is traditional for scalable calculations, performed on RCS and

clusters;

• reducing of the number OpF of computing devices in the task basic subgraph [20] in

proportion to R(or its prime cofactors). The number of operations, performed by each

computing device, and the number of data processing cycles increase. This method is used

for RCS;

• decreasing of the processed data width ρF in proportion to R (or its prime cofactors).

The method is used for fixed-point data, and used with restrictions for floating-point data.

The number of processing cycles multiply increases. At the same time, the number of data

processing channels multiply decreases. This reduction is used in case of lack of input data

channels (the most typical case for RCS);

• increasing of the data processing interval S;

• decreasing of the clock rate Freq [20].

In the first, second, and third cases, we reduce both the performance and the hardware

costs for the computing structure F , if the switching and synchronization costs do not exceed

the reduced resources. If we use the two last methods, we only reduce the performance of a task

or its fragment. In this case, the hardware costs remain unchanged. We can use these methods

for matching of data processing rates in different task fragments.

So, we reduce the hardware costs and the number of RCS channels, needed for the computing

structure F , only if the hardware costs for switching and synchronization do not exceed the

reduced resources.

The performance reduction methods without hardware costs reduction are the following:

• the reduction by clock rate;

• the reduction by data processing interval.

A multiple integer, unified for all task fragments automatic performance reduction (5) pro-

vides a balanced computing structure. Thus, all task fragments are to be reduced not only with

the same reduction coefficient R, but the types and coefficients of performed reductions are to

be the same. However, for real tasks such requirement is almost impossible.

If we reduce the performance in order to decrease the hardware costs, then all types of

reduction transformations are performed in a balanced manner. Here, the reduction coefficient

is a positive integer not less than unity. Owing to the reduced computing structure, we can solve

the task on lesser hardware resource with longer solution time (in proportion to the reduction

coefficient).

In order to describe all reductions of the modifying computing structure, we suggest to use

an operation, which rounds rational numbers down to unity [21]. For natural numbers a ≥ 1

and b ≥ 1, the operation is defined as

⌊
a

b

⌋

1

=




a div b, a > b,

1, a ≤ b,
(6)
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where div is integer division; b c1 is similar to the standard floor notation b c [21], and it

indicates that the result of the “floor” operation is bounded below by unity.

The result of the floor operation b c1 corresponds to the physical meaning of the param-

eters that are being reduced, because the number of basic subgraphs, computing devices, and

processed digits cannot be less than unity after the reduction. The traditional “floor” operation

b c has a useful property given in [21]. For the real numbers m, x and the natural number n

⌊⌊ x
m

⌋

n

⌋
=

⌊
x

m · n

⌋
. (7)

Since the set of natural numbers is a subset of the set of real numbers, and function (4) is

monotonic and continuous, equality (7) is valid for the proposed function, too. Taking into

account the commutative law, we obtain:

⌊⌊ x
m

⌋
1

n

⌋

1

=

⌊⌊x
n

⌋
1

m

⌋

1

=

⌊
x

m · n

⌋

1

. (8)

Taking into account (8), we prove the following important theorem, which represents the

reduction coefficient as a production of coefficients for the sequential reduction transformation.

We denote sequential reduction by ×.

For example, the sequential reductions by number of basic subgraphs and by number of

computing devices we represent as RTn ×RTOp = Rn·m.

Theorem 1.

Sequential T-type reductions RTmand RTn with natural coefficients m > 1 and n > 1 are

equivalent to the reduction RTn·m of the same type with a coefficient (m · n) > 1:

RTn ×RTm = RTn·m. (9)

Proof. Let F be a task fragment which contains NF basic subgraphs. Each basic subgraph

contains OpF computing devices and processes data with a width ρF . The total amount of

calculations NCF in F is

NCF = NF ·OpF · ρF . (10)

Since reduction transformations are independent, then we prove (9) for each type of reduc-

tion.

Let us prove condition (9) for the reduction RNn by the number of basic subgraphs with the

reduction coefficient n. The number of basic subgraphs in F is reduced to bNF

n c1, and the total

amount of calculations NCNn is:

NCNn =

⌊
NF

n

⌋

1

·OpF · ρF . (11)

The sequential reduction RNm of the same fragment provides m-fold decreasing of its number

of basic subgraphs. According to (8), we transform (11) and obtain

NCN×N
n×m =

⌊bNF

n c1
m

⌋

1

·OpF · ρF =

⌊
NF

n ·m

⌋

1

·OpF · ρF . (12)

The total amount of calculations (12), which we obtain as results of the sequential reductions

by number of basic subgraphs with the coefficients n and m, and as results of the reduction RNn·m
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by number of basic subgraphs with n ·m instead of n in (11), have the same value. This fact

proves Theorem 1. In a similar way, we prove (9) for the reduction by number of computing

devices, and for the reduction by data width. As a result, we prove Theorem 1 in general. �
Let us formulate several corollaries for application of reduction transformations.

Corollary 1.1 of Theorem 1. Using factorization of performance reduction coefficients,

we decrease the number of steps, required for selection of reasonable coefficients for sequential

reductions of the same or different types. Besides, for the specified reduction coefficient we choose

the best suited type of reduction transformations according to the parameters of a solving task.

If the performance reduction coefficient R is a prime number, which exceeds 2, and if we cannot

obtain it by a single reduction, then it is reasonable to perform not an R-fold, but an (R + 1)-

fold reduction. In this case, we obtain fully R times lower hardware costs. Since (R + 1) is

an even composite number, we sequentially perform reduction transformations with reduction

coefficients taken from the prime factorization of (R+ 1).

Corollary 1.2 of Theorem 1. There is no need to return to the initial basic subgraph,

when the reduction coefficient multiply increases during sequential reduction of one and the same.

If the result of a reduction transformation is a computing structure, which requires additional

multiple (not less than twofold) decreasing of hardware costs, and its reduction type permits

multiple increasing of its coefficient, then, according to Theorem 1, sequential reduction with no

return to the initial basic subgraph lessen the number of steps to get a final reduced structure.

According to Theorem 1, Corollaries 1.1 and 1.2, the total coefficient of sequential reductions

equals to a product, but not to an algebraic sum of reduction coefficients. Therefore, it is

impossible to get a reduced computing structure with a coefficient from a structure with a

coefficient (n + 1) using sequential reductions of any type. Let us prove this statement (or

Theorem 2) more strictly for a generalized case with a reduction coefficient (n+ x).

Theorem 2.

In the general case, for a basic subgraph reduced with a coefficient n, we cannot obtain a

computing structure with a reduction coefficient (n+ x) for a prescribed x ≥ 1, using sequential

reductions of a type T with a natural coefficient k > 1:

RT1n ×RT2k 6= RTn+x. (13)

Proof. According to Theorem 1, it is possible to fulfil (13) for reductions of the same type

T only if

n · k = n+ x (14)

is valid.

Then, we transform (14) and obtain

k = 1 +
x

n
. (15)

According to Theorem 2, the numbers n, k and x are positive integers. So, we solve (15) for

k only when x is integrally divided by n, but not ∀x ≥ 1. This fact proves Theorem 2.

If we perform reductions of different types, then the similar computing structures from the

left and right sides of (13) have the same total amount of operations

NCT1×T2n×k = NCTn+k. (16)
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Therefore, ⌊
NC

n · x

⌋

1

=

⌊
NC

n+ x

⌋

1

, (17)

which requires

n · k ≥ n+ x and n+ x ≥ n · k (18)

to be fulfilled.

Both conditions are true only if

n · k = n+ x. (19)

So,

k = 1 +
x

n
. (20)

Under hypothesis of Theorem 2, n, k, and x are positive integers. Hence, the solution of (20)

for k is possible in the natural domain only when x is integrally divisible by n, but not when

∀x ≥ 1. This conclusion leads to contradiction and, as a result, proves Theorem 2. �
Using Theorem 2, we formulate a corollary which is important for application of a sequence

of reduction transformations.

Corollary 2.1 of Theorem 2. For a reduced structure, it is impossible to increase the

reduction coefficient by an arbitrary value, performing sequential reductions of any types. Hence,

in general case, if additional reduction (of hardware costs) is needed, we return to the initial

basic subgraph and perform reduction transformations again with a new (increased) reduction

coefficient R. As a result, we need more steps to obtain the reduced computing structure.

Let us analyse, how a sequence of reduction transformations of various types influences on

a final computing structure.

Theorem 3.

The superposition of reductions of different types (e.g. a reduction T1 with a coefficient n,

and a reduction T2 with a coefficient m) is commutative. Therefore, if we change the order

of reductions of different types for a task fragment, then the result information graph of the

fragment remains unchanged:

RT1n ×RT2m = RT2m ×RT1n ,

where T1 and T2 are the types of reduction transformations; n and m are the reduction coeffi-

cients.

Proof. Let us prove commutativity of sequential reductions. The first reduction is performed

by number of basic subgraphs, and the second one – by number of computing devices:

RNn ×ROpm = ROpm ×RNn . (21)

After the reduction RNn , which is performed by number of basic subgraphs and has the

reduction coefficient n, the total amount of calculations NCNn over binary digit bits is

NCNn =

⌊
NF

n

⌋

1

·OpF · ρF . (22)

Since the number of basic subgraphs and the number of computing devices in each basic

subgraph are independent values, then the sequential reduction ROpm by number of computing
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devices with the coefficient m decreases only the number of devices, and the total amount of

calculations over binary digit bits is

NCN×Op
n×m =

⌊
NF

n

⌋

1

·
⌊
OpF
m

⌋

1

· ρF . (23)

For the right side of (21), the sequential reductions ROpm and RNn lead to the same total

amount of calculations over binary digit bits:

NCOp×Nm×n =

⌊
NF

n

⌋

1

·
⌊
OpF
m

⌋

1

· ρF . (24)

We prove commutativity for all other possible combinations of sequential reductions in the

same way. As a result, this fact proves Theorem 3. �
Using Theorem 3, we define a corollary for estimation of the number of reduction steps.

Corollary 3.1 of Theorem 3. If the order of reduction transformations is changed, it is

not necessary to return to the initial basic subgraph in order to decrease the number of steps.

4. Performance Reduction Methods for Information Graphs

Mapping on Reconfigurable Architectures

Taking into account the proved theorems and corollaries, let us formulate the main rules

information graph adaptation to RCS architectures.

1) To decrease the number of steps of reduction transformations, it is reasonable to choose

coefficients of each type of reduction from the prime factorization of the reduction coefficient.

2) If the number of basic subgraphs in an information graph is more than 1, then it is

reasonable to perform the reduction by number of basic subgraphs as the first step of reduction

transformations.

In this case, we linearly decrease the required hardware resource such as the number of

FPGA logic cells, and the number of channels for data parallelization.

3) If we perform the reduction by number of computing devices, and by data width to decrease

the number of steps of reduction transformations, it is reasonable to perform reductions of each

type until the value, specified by reduction criteria, is reached. After that, we perform reduction

of another type. Here, the value is chosen according to the cofactors of the reduction coefficient

of an information graph.

In this case, we reduce additional overhead of switching hardware.

Owing to the performance reduction methods, which we use for information graphs mapping

on RCS architectures, it is possible to divide the set of parallelization variants into several classes

that consist of isomorphic computing structures. As a result, we have few variants for analysis.

Let us estimate the number of steps of reduction transformations, which we need to adapt

an information graph to a reconfigurable architecture. We consider the most general case, when

it is necessary to perform all types of reduction transformations (by number of basic subgraphs,

by number of computing devices, and by data width) for reduction of hardware costs.

To define the initial value of a performance reduction coefficient R of a computing structure,

we use its approximate value the coefficient of necessary hardware costs reduction RT , defined

as a proportion of the hardware resource, needed for hardware-programmed information graph,

to the available RCS resource ARCS . The hardware resource AT for hardware-programmed

information graph is equal to the sum of hardware costs of all task subgraphs for each architecture
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component of an FPGA (the number of Look-UP Tables (LUTs), Memory LUTs (MLUTs), Flip-

Flops (FFs), the number of Digital signal processor blocks (DSPs) and Block RAM (BRAMs)).

For an RCS we use the parameters of FPGA chips as follows:

AT = {ALUTT , AMLUT
T , AFFT , ADSPT , ABRAMT },

ARCS = {ALUTRCS , A
MLUT
RCS , AFFRCS , A

DSP
RCS , A

BRAM
RCS }. (25)

A hardware costs reduction coefficient for each resource is a proportion of the hardware

costs, needed for task solution, to the available resource. We select the task hardware costs

reduction coefficient as the maximum value among the calculated values:

RT = Max(
ALUTT

ALUTRCS

,
AMLUT
T

AMLUT
RCS

,
AFFT
AFFRCS

,
ADSPT

ADSPRCS

,
ABRAMT

ABRAMRCS

). (26)

The initial value of the performance reduction coefficient R0 is equal to the coefficient RT ,

rounded up to the nearest integer: R0 = dRT e.
For linear and iterative computing structures, used in tasks of symbolic processing and linear

algebra, respectively, the hardware costs reduction coefficient RT and the performance reduction

coefficient R0 can be the same. In most cases, it turns out that for performance reduction with a

coefficient, which is equal to the hardware costs reduction coefficient, it is necessary to increase

the performance reduction coefficient even more, due to unforeseen switching costs. Since the

overall reduction coefficient is nonadditive for sequential reduction (according to Theorem 2),

then it is necessary to increment R0 by 1, and to perform reduction with a new coefficient.

Performance reduction is carried out for the initial value of the performance reduction coeffi-

cient R0 > 1, which, according to the fundamental theorem of arithmetic, and to Corollaries 1.1

and 3.1, is a product of prime cofactors:

R0 =
∏

i

r0i. (27)

To perform reduction transformations, taking into account the task parameters, and the

prime factorization of the reduction coefficient R0, we represent it as a product of three coeffi-

cients of reduction transformations:

R0 = RN0 ·ROp0 ·Rρ0. (28)

If R0 is a prime number, we increment it by 1 according to Corollary 1.1.

Since in our case all reductions are performed, then all reduction coefficients RN0 (by number

of basic subgraphs), ROp0 (by number of computing devices) and Rρ0(by data width) exceed unity.

In the first step, it is reasonable to perform the performance reduction by number of basic

subgraphs with the coefficient RN0 . In the second step, we perform the reduction by number of

computing devices with the coefficient ROp0 . The extreme case of subgraph reduction by number

of computing devices means sequential execution of its operations as gproc (2) in one device

(a processor). If the coefficient ROp0 is less than the number of devices in a subgraph, then,

according to the type and number of used operations, several variants of computing structures

are possible (with the different latency time and data supply interval). The reduced computing

structure must provide data equivalency of results. Therefore, each of the considered variants

contains devices that perform the operations of the basic subgraph, in order to perform all its

operations within the reduced computing structure.
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Let us consider reduction by number of devices for a basic operation of the fast Fourier

transform with calculation of coefficients. Its information graph contains 16 operations such as

8 multipliers, 4 adders, and 4 subtractors (see Fig. 3a). Taking into account, that hardware-

programmed addition and subtraction are identical, we claim that 8 multipliers and 8 adders

are enough for the hardware-programmed information graph.

In the case of reduction by number of devices for a basic operation of the fast Fourier

transform it is possible to suggest not less than 5 different variants called m-subgraphs. Each

m-subgraph is characterized by its own data processing interval and hardware costs:

1. An m-subgraph µ1 (minimal, Fig. 3d) contains not more than one device for each type of

the operations of the subgraph. For our example, µ1 contains 2 devices – a multiplier and

an adder.

2. An m-subgraph µ2 (multiple) represents a multiple reducing of the number of devices in

the subgraph, and is similar to factoring out. Several variants of µ2 are possible, such as

8 devices (4 multipliers, 4 adders, Fig. 3b), 4 devices (2 multipliers, 2 adders, Fig. 3c), and

2 devices (1 multiplier, 1 adder, Fig. 3d).

3. An m-subgraph µ3 contains all devices from a layer with the maximum total number of

operations. If it is necessary, the set of operations is complemented with devices to keep

data equivalency. In this case, the layer with the maximum total number of operations is

involved entirely, and it is executed during one clock cycle. For our example, µ3 contains

8 devices from the first layer (4 multipliers, 4 adders, Fig. 3b).

4. An m-subgraph µ4 is formed by a layer with the maximum number of operation types. If

it is necessary, the layer is complemented with devices to keep data equivalency. For our

example, µ4 is similar to µ3. It contains 8 devices from the first layer (4 multipliers, 4 adders,

Fig. 3b).

5. An m-subgraph µ5 (the improved minimal one) is the minimal µ1 with one supplementary

device that performs the most repeated operation of a basic subgraph. For some subgraphs,

it provides approximately twofold decrease in the data processing interval for the reduced

computing structure. For our example, µ5 contains 3 devices (2 multipliers, 1 adder).

We formed the list of m-subgraphs on the base of tasks from such problem domains as digital

signal processing, symbolic processing, linear algebra, and molecular docking. It is possible to

add to the list some new strategies of m-subgraphs synthesis for tasks from other problem

domains. However, the total number of possible strategies hardly ever exceeds 10, because the

number of problem domains of RCS application is limited. Here, µ1, µ2 and µ5 are the most

interesting m-subgraphs. The m-subgraph µ1 is the most common variant of basic subgraphs

from various problem domains; µ2 is the most acceptable for scaling of computing structures,

but not always suitable due to the task structure; µ5 is the most time-optimal, if hardware

resource is sufficient for additional hardware-programmed device.

After the reduction by devices, in the third step of transformations, the reduction by data

width with the coefficient Rρ0 is performed for each synthesized m-subgraph. Here, the number

of possible variants of reduction by data width for possible data types does not exceed 2:

• For the reduction by width of logical and integer data (fixed-point data), the decrease in

hardware costs is linearly proportional to the reduction coefficient. Therefore, the reduction

is performed with the specified coefficient that does not exceed the width of processing

data.
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(a) The information graph

of hardware-programmed fast Fourier

transform basic operation

(b) The computational structure

of m-subgraphs µ2-8 devices, µ3 and µ4

(c) The computational structure

of m-subgraphs µ2-4 devices, µ3 and µ4

(d) The computational structure

of m-subgraphs µ1 and µ2-2 devices

Figure 3. The information graph of hardware-programmed fast Fourier transform basic operation

and m-subgraphs µ1, µ2, µ3, µ4, µ5

• If floating-point data are reduced, then it is reasonable to perform 2-fold reduction by data

width for 32-digit data, and 2- and 4-fold reduction by data width – for 64-digit data. It

is caused by the exponential growth of the overhead expenses for processing of a mantissa

and an order of magnitude for other reduction coefficients.

Thus, after reduction by data width, the number of m-subgraph variants is equal to 5 · 2 =

10. For each variant, it is necessary to analyze the required hardware resource, and the data

processing interval, which defines the task solution time. Sometimes, when the hardware costs AT

of the reduced task structure exceed the available RCS hardware resource ARCS , we perform the

additional or fourth step of transformations. Such situation occurs due to additional switching

costs, required for the reduction by number of computing devices and for the reduction by

floating-point data width, because hardware costs are decreasing non-linearly. For the reduction

by number of computing devices, we cannot always calculate the reduction coefficient ROp0 before

the transformations. Therefore, the coefficients ROp0 and Rρ0 may demand correction after the

reduction.

After all reduction transformations, we evaluate the achieved reducing of hardware costs

for task solution. Two variants are possible. We map the reduced computing structure on the

available RCS hardware resource, or we additionally reduce hardware costs due to growth of ex-

penses. In the first case, we perform the reduction transformations to map the information graph

on the RCS architecture, and it takes 3 steps with analysis of 10 variants. In the second case, we

return to the initial information graph (according to Theorem 2), and perform the performance
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reduction (steps 1–3) with the increased coefficient R1 = R0 + 1. Or, if it is possible, we perform

multiple reductions by one parameter. Obviously, in the second case, the number of analysed

variants is duplicated and equal to 20. Even if the task structure consists of several fragments,

then the number of variants for justification performed by additional reduction transformations,

and by methods of data processing, is few. Here, the additional reduction transformations consist

in variation of the clock rate and data processing interval, and data processing can be parallel,

pipelined, or can be represented as a macropipeline or a nested pipeline. Practically, the number

of different fragments in the most part of tasks does not exceed 3–5; hence, the total number of

variants of reduction transformations for such tasks hardly ever exceeds 60.

When a sequential program for a multiprocessor computer system with distributed mem-

ory is parallelized automatically, the compiler evenly distributes all calculations among the

nodes without any splitting into several subtasks. It is necessary to analyse data distribution

into nodes to avoid data nonlocality that may occur during automatic distribution of calcula-

tions disregarding dependencies (Read-After-Write, Write-After-Read, Write-After-Write, Read-

After-Read) [21, 22] of the source program. So, the parallelizing compiler selects one parameter

the parallelizing coefficient according to the number of used multiprocessor computer system

nodes, the data spatial locality criterion, and the dependencies of the source program.

Reduction of performance and hardware costs of a RCS is performed with a reduction co-

efficient, which is the same for all subtasks. As a result, the reduced computing structure is

balanced. For an RCS, it is possible to reduce the performance by such parameters as the num-

ber of devices, data width, and interval of processing data, unavailable for processor computer

systems. For an RCS, in contrast to processor architectures, the overall reduction coefficient for

each subtask is represented as a product of reduction coefficients (by number of basic subgraphs,

devices, data width and interval). Owing to the fact, that we use a specific combination of re-

duction coefficients for each subtask, it is possible to take into account parameters of subtasks,

choosing the most rational coefficients of reduction transformations, and to decrease the variety

of reduced computing structures. Using such approach, we considerably decrease both the num-

ber of analyzed variants, and the time of information graph adaptation to the architecture and

configuration of the given RCS.

5. Order of Reduction Transformations For Synthesis

of Computing Structures

We created software tools for application development [24], based on our principles of auto-

matic mapping of information graphs on RCS architectures, and on our performance reduction

methods. With the help of the software, any sequential C-program is transformed into the

absolutely-parallel information graph form. After that, the information dependencies among the

task subgraphs are analyzed, and performance reduction of the subgraphs is performed for fur-

ther adaptation to the RCS architecture, selected by the user. The methodology of all these

transformations is the topic for another paper, and it transcends the scope of this work. There-

fore, let us represent the basic rules, which we use for reduction of tasks, containing several

subgraphs. To justify the speed of data processing in all subtasks of the information graph, and

to select the most rational form of calculations for each subgraph, taking into account computing

structures of other subgraphs and the whole task, we use the following order of reduction for

computing structure synthesis:
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1. Scaling and performance reduction of the information graph starts from the biggest sub-

graph. Here, “the biggest subgraph” means the subgraph with the highest hardware costs.

The number of memory channels, and the data flow density of the biggest subgraph define

all these parameters for all the rest subgraphs.

2. For basic subgraphs partition during analysis of its hardware resource, it is reasonable to

compare it with the minimum resource, which is definitely implementable in one FPGA

chip. In this case, there is no need to scale the subgraph with the help of the methods

of reduction by number of devices, and by data width. If the given minimum resource is

sufficient for the subgraph, then the subgraph is hardware-programmed without scaling.

3. The first transformation is decreasing of the number of memory channels. It is performed

with the help of the reduction by number of subgraphs for data independent subgraphs.

Then, according to the reduction coefficient, all reviewed reduction transformations are per-

formed. Here, we take into account that the order and priority of reduction transformations

for different types of tasks can be different.

4. For subgraphs with low weights, it is reasonable to perform hardware implementation. Here,

a low weight is not more than a-priori specified value, for example, 5 % from the total

hardware costs of the task. If it is necessary to reach the specified reduction coefficient, we

use the reduction by data processing interval. Such subgraphs have no considerable influence

on exceeding of task hardware resource. Besides, the reduction by number of devices, and

by data width can both complicate hardware-programming, and increase hardware costs for

switching structure, and, as a result, lead to additional steps of reduction transformations

for all task subgraphs.

5. If reduction transformations are the same, but used with different coefficients and in different

subtasks, it is necessary to synchronize data flows density (is performed automatically). As

a rule, such synchronization leads to additional hardware costs, because hardware program-

ming of synchronization blocks is based on multiplexers/demultiplexers, buffers, internal

dual-port memory (BRAM).

6. When we perform the reduction by number of subgraphs, we keep at least one loop structure,

because this is the way to decrease the task solution time. Besides, it does not increase

the number of distributed memory channels, and it occupies hardware resource, which is

available and rather large. If it is impossible, then we program a multipipeline structure. It

inevitably contains a feedback, and larger data processing interval; hence, the task solution

time grows. Reduction of the data processing interval in such computing structure is possible,

if the structure is optimized, i.e. transformed into a nested pipeline or into a macropipeline.

In this case, the multipipeline computing structure contains the number of layers equal to

the latency of iterative rungs. Then, the computing structure can be reduced to one pipeline,

and the feedback sequence is completed with registers. The number of registers is equal to

the latency.

7. If the information graph layers have a data dependence, which is possible in the case of

functionally irregular graph, then basic subgraphs are reduced to the sequential form.

We experimentally verified all these rules with the help of our compiler prototype and testing

tasks of linear algebra, symbolic processing and digital signal processing, such as SLAE solution

by the Gaussian method, SLAE solution by the Jacobi method, SLAE solution by lower-upper-

decomposition, the basic operation of fast Fourier transform with coefficients calculation. For

all these problems, the number of steps of reduction transformations, calculated according to
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the suggested methodology, does not exceed 16. The obtained values of reduction coefficients,

numbers of transformation steps, and practical results for the scaled tasks, prove that the re-

duction transformation methods for automatic creation of parallel RCS applications, reviewed

in the paper, are correct and efficient. The efficiency of solutions, created with the suggested

methods, is not less than 50–75 % in comparison with optimal solutions, designed by circuit

engineers.

Conclusion

The task information graph, used as the absolutely parallel form of a task for an RCS, pro-

vides the maximum performance with the maximum hardware costs. When a task is hardware-

programmed on an RCS, the user transforms its information graph into a computing structure

which provides lower performance and occupies smaller hardware resource. This transforma-

tion, decreasing the performance and hardware costs, is performed by reducing the number of

subgraphs, computational devices, the processing data width, by increasing the data processing

interval, and by reducing the rate. We use performance reduction not only for those tasks, that

need more resource, than it is available, but also as a method of mapping (or adaptation) of

an information graph to an RCS architecture. Owing to the performance reduction methods for

RCS, it is possible to use reduction by number of devices, by data width and interval. This is

unachievable for processor computer architectures.

Owing to the proved theorems on reduction transformations, we defined the main principles,

and suggested the methodology of information graphs mapping on RCS architectures with the

help of the performance reduction methods. Besides, we estimated the number of performed

reduction transformations. Performance reduction does not change the total number of variants

of a parallel application, but helps us to distribute these variants into several classes for further

analysis. It is sufficient to analyze only one variant from each class, not the whole class. The

obtained estimation of the number of analyzed variants of the computing structure, synthesized

as a result of reduction of performance and hardware costs, is considerably less than the similar

indicator for a multiprocessor computer system with distributed memory. We explain it by

decomposition of the whole set of variants into topologically isomorphic groups of solutions,

performed during reduction. Decrease of the number of analyzed variants to a single computing

structure from each class considerably decreases the creation time of a parallel application,

adapted to a RCS architecture (or configuration).

Further research will be directed at extension of classes from various problem domains, at

mapping of information graphs on RCS architectures with the help of the reviewed methods of

automatic reduction of performance and hardware costs.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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