
Automatic Port to OpenACC/OpenMP for Physical

Parameterization in Climate and Weather Code

Using the CLAW Compiler

Valentin Clement1 , Philippe Marti1 , Xavier Lapillonne2 ,

Oliver Fuhrer2 , William Sawyer3

c© The Authors 2019. This paper is published with open access at SuperFri.org

In order to benefit from emerging high-performance computing systems, weather and climate

models need to be adapted to run efficiently on different hardware architectures such as accel-

erators. This is a major challenge for existing community models that represent extremely large

codebase written in Fortran. Large parts of the code can be ported using OpenACC compiler

directives but for time-critical components such as physical parameterizations, code restructuring

and optimizations specific to a hardware architecture are necessary to obtain high performance. In

an effort to retain a single source code for multiple target architectures, the CLAW Compiler and

the CLAW Single Column Abstraction were introduced. We report on the extension of the CLAW

SCA to handle ELEMENTAL functions and subroutines. We demonstrate the new capability on

the JSBACH land surface scheme of the ICON climate model. With the extension, JSBACH can

be automatically ported to OpenACC or OpenMP for accelerators with minimal to no change to

the original code.
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Introduction

Numerical Weather Prediction and Climate modeling can highly benefit from computer tech-

nologies advances by increasing resolution or model complexity. In the recent years, architectures

such as Graphics Processing Unit (GPU) have emerged for scientific high performance comput-

ing offering new opportunities. Most of the current Numerical Weather Prediction and Climate

models are large Fortran based community codes which require to be adapted or re-written to

run on non traditional CPU architectures such as GPU. In order to prepare for heterogenous

supercomputer architectures, the global weather and climate model ICON [2, 4] is being ported

to accelerators. The major part of the porting is currently achieved using OpenACC [10] com-

piler directives. For many code sections simple insertion of OpenACC compiler directives is an

appropriate porting approach. But, for time-critical components such as the physical parameter-

izations, code restructuring and optimizations it is necessary to obtain optimal performance [6].

In some cases, the required code restructuring and optimization for GPU architectures have

a negative impact when running the same code on a CPU architecture. Multiple solutions to

address this problem have been proposed to achieve performance portability across architec-

tures [3, 5, 8]. Here we focus on CLAW [1], an open-source source-to-source translator that

allows to perform architecture-specific code transformations with minimal code modifications.

The CLAW SCA is designed to address the physical parameterizations of atmospheric mod-

els in Fortran. Physical parameterizations are typically horizontally independent so each vertical

column can be computed separately. With the CLAW SCA, the physical parameterizations are

written in Fortran only considering the vertical dependencies while the horizontal directions are

abstracted out. The CLAW Compiler can transform the code for a specific target architecture
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and insert horizontal loops and compiler directives such as OpenMP [11] for accelerator (version

≥ 4.5) or OpenACC.

In this paper, we focus on an CLAW SCA incorporation that extends CLAW capability to

address such performance portability issues without imposing disturbing changes to the code

base. We introduce a special case of the CLAW SCA connected with ELEMENTAL functions

and subroutines. We demonstrate the new feature on the JSBACH land surface scheme [7] used

in the ICON climate model. This paper is structured as follows: Section 1 describes the JSBACH

land surface scheme and its use of ELEMENTALs. In Sections 2 and 3 we present the CLAW

Compiler and the extension of SCA for ELEMENTALs. In Sections 4 and 5 we discuss our

performance results and some code metrics. Finally, in Section 5 we draw our conclusion and

discuss future work.

1. The JSBACH Land Surface Scheme and ELEMENTAL

In this section, we briefly describe the concept of ELEMENTAL subroutines and functions

and its application in the JSBACH land surface scheme. Further, we summarize its structure.

1.1. ELEMENTAL subroutines and functions

In Fortran, an ELEMENTAL function or subroutine is defined as a scalar operator. Dummy

arguments as well as potential return value must be scalars but it may be called with arrays of

arbitrary dimensionality as actual arguments. In this case, the operations defined in the function

or the subroutine are applied element-wise on the full arrays. The main benefit of ELEMENTAL

functions or subroutines is that it allows the user to write more compact code and allows the

compiler to parallelize function or subroutine execution.

1 PROGRAM main
2 IMPLICIT NONE
3 INTEGER : : x , y , z
4 INTEGER, DIMENSION(10) : : xa , ya , za
5 x = 2 ; y = 10
6 xa ( : ) = 2 ; ya ( : ) = 5
7

8 ! Ca l l ELEMENTAL with s c a l a r s
9 z = power (x , y )

10 print ∗ , ’ x ∗∗ y = ’ , z
11

12 ! Ca l l ELEMENTAL with arrays
13 za ( : ) = power ( xa ( : ) , ya ( : ) )
14 print ∗ , ’ xa ( : ) ∗∗ ya ( : ) = ’ , za
15

16 CONTAINS
17

18 ELEMENTAL FUNCTION power (a , b) RESULT( c )
19 INTEGER, INTENT(IN) : : a , b
20 INTEGER : : c
21 c = a ∗∗ b
22 END FUNCTION power
23 ENDPROGRAM

Figure 1. Code example with a basic ELEMENTAL function

A very basic ELEMENTAL function is implemented in Fig. 1 from line 18 to 22. First it is

mentioned with scalar arguments at line 9, second, with arrays arguments at line 13.
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1.2. JSBACH

JSBACH is the land surface scheme of the global ICON model in climate mode. It is designed

to serve as a land surface boundary for the atmosphere in the coupled simulation but it can also

be used offline as a standalone model. JSBACH simulates photosynthesis, phenology and land

physics with hydrological and bio-geochemical cycles.

JSBACH code is written in 2008 Fortran object-oriented style. It is designed as a pipeline

of tasks where each task is applied on various tiles of the soil depending on their properties.

Each task retrieves a number of fields from the internal memory object and applies several

ELEMENTAL functions and/or subroutines as well as vector operations to them.

JSBACH interface

Radiation interface

update surface radiation

calc radiation surface net

lwnet from lwdown

calc radiation surface net

lwnet from lwdown

Vector notation to expand

calc radiation surface net

lwnet from lwdown

Figure 2. Example of a typical task workflow using ELEMENTALs in JSBACH - update radi-

ation surface from the radiation interface

To hide some aspects of the design such as the memory access and pointers, JSBACH

includes a non-Fortran Domain Specific Language (DSL). The code must be preprocessed by

a Python script in order to obtain standard Fortran code. Section 2.1 describes where this

preprocessing sits in the CLAW Compiler workflow. The choices of using ELEMENTAL functions

and subroutines and the JSBACH DSL significantly simplify the code for the domain scientist.

In its original form, the code is not suited to be ported easily to accelerators using OpenACC

or OpenMP as compilers do not allow directives in PURE or ELEMENTAL functions and

subroutines. In some cases vector notation can be handled by compilers with the !$acc kernels

construct. But in practice, we have experienced several cases where the compiler was not able to

determine that the kernel can be run in parallel and thus generated a sequential version of the

code resulting in a significantly slower GPU execution comparing to the CPU version. This was

especially true with older version of OpenACC compatible compiler but can be solved having

reasonable amount of vector notation in an !$acc kernels block.
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In order to execute the code on a GPU, we need to either fundamentally refactor JSBACH

or to take advantage of a source-to-source translator such as CLAW. CLAW can automatize

the port while taking advantage of the current information we can extract from it. The latter

solution is the one described in this paper and has the advantage to bring portability across

compiler directives by supporting OpenACC and OpenMP simultaneosly.

Figure 2 is a typical call graph of a single task defined in JSBACH. update radiation surface is

part of the radiation interface. This task is calling a single ELEMENTAL subroutine three times

with different fields as arguments. This ELEMENTAL subroutine ( calc radiation surface net ) calls

another ELEMENTAL function.

As all ELEMENTAL code needs to be transformed to accept compiler directives, everything

in the task is transformed to be executed on the accelerator.

Table 1. JSBACH tasks with the number of automatically

generated kernel and the number of 1 dimensional (1D)

and 2 dimensional (2D) input/output fields for each task

Interface Task name Nb. kernels 1D in 1D out 2D in 2D out

Radiation surface radiation 4 11 7 0 10

radiation par 5 10 6 4 4

albedo 12 38 18 0 0

Phenology phenology logrop 11 30 21 0 0

fpc 3 2 1 0 10

Hydrology snow and skin fraction 11 11 4 0 0

soil properties 2 7 0 7 7

evaporation 3 16 6 0 0

surface hydrology 1 4 0 4 0

soil hydrology 3 3 3 1 0

canopy cond unstressed 1 2 1 0 0

canopy cond stressed 1 7 5 5 0

water balance 5 7 3 2 3

Surface energy surface energy lake 7 16 16 0 0

balance surface energy land 18 23 14 0 0

surface fluxes lake 1 11 6 0 0

surface fluxes land 1 7 4 0 0

asselin land 3 3 2 0 0

snowmelt correction 4 3 1 4 0

Soil snow soil and snow properties 14 2 4 2 2

energy soil and snow temperature 14 3 5 4 10

Assimilation assimilation scaling factors 2 1 0 0 1

canopy cond unstressed 2 4 1 3 1

Turbulence humidity scaling 10 14 3 3 0

roughness 3 3 1 0 0

The full JSBACH model in its ICON configuration is composed of about 30 different tasks

and represents roughly 30’000 lines of code. There is a total of 70 ELEMENTAL subroutines and

functions to transform. Our approach is applied to all required tasks for a climate simulation.
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Table 1 describes the list of tasks automatically ported to GPU. For each tasks, the number of

kernels generated and their corresponding inputs and outputs are detailed. 1 dimensional fields

includes only the horizontal dimension where 2 dimensional include the number of soil layer as

their second dimension.

2. The CLAW Compiler and the Single Column Abstraction

This section presents the CLAW Compiler and the Single Column Abstraction on which our

work is based.

2.1. The Compiler

The CLAW Compiler is an extensible open-source source-to-source compiler for modern

Fortran code. It is based on the OMNI Compiler Project [9].

original.f90

dsl4jsb

original dsl4jsb.f90

Fortran Preprocessor (FPP)

original.pp.f90

OMNI F-Front

XcodeML/F IR input

CLAW X2T

XcodeML/F IR output

OMNI F-Back

transformed.f90

Figure 3. CLAW Compiler workflow including the JSBACH DSL preprocessing

Figure 3 illustrates the internal workflow of the compiler. JSBACH code is pre-processed

by a dedicated Python script which initially translates the JSBACH DSL to standard Fortran

before entering the CLAW workflow. Fortran code is pre-processed and then parsed to the

XcodeML/F Intermediate Representation (IR) [12]. This IR - represented as an Abstract Syntax

Tree (AST) - is then manipulated by CLAW XcodeML to XcodeML Translator (X2T) to produce

the refactored version of the code for a specific target with inserted directives. Finally, the IR

is decompiled to standard Fortran code before being compiled by default compilers. Major

contribution to extend its transformations for ELEMENTALs was introduced in the CLAW

X2T.

2.2. CLAW Single Column Abstraction (SCA)

In weather and climate models, the physical parameterizations are, in most cases, single

column processes. Each column of the three-dimensional computational domain can be computed
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independently and does not have any data dependencies on its neighbors. The CLAW Single

Column Abstraction DSL [1] was introduced to exploit this information. A CLAW SCA source

code is fully standard Fortran code with the addition of specific CLAW directives. The code has

no notion of the horizontal dimensions in the declaration of the fields as well as in the execution

part. Loops iterating over horizontal dimension are omitted.

Figure 4. Invocation of the CLAW Compiler with a specified target architecture and desired

directives

The SCA code is processed by the CLAW Compiler as shown in Fig. 4. The user defines the

target architecture as well as the compiler directives to be used. Under the hood, the CLAW

Compiler performs create a data dependency graph to decide where to create kernels and there-

fore which temporary fields have to be promoted. Based on this analysis it inserts the necessary

iterations over the parallel dimensions and promotes the appropriate fields within the physical

parametrization. In addition, the compiler inserts the required compiler directives to parallelize

the loops and to manage data movement between the host and the device memory. The SCA

transformation comes with various user-configurable options to manage promotion and data

movement strategy, giving the end-user freedom to test various configurations.

3. Extension for ELEMENTAL Subroutines and Functions

An ELEMENTAL function or subroutine can be seen as a specific case of the CLAW SCA [1].

The land surface scheme is a point-wise computation on the grid that can be viewed as a column-

wise computation with a limited number of vertical level.

The depth of the subroutine or function in the call graph determines the transformation

applied to it. In Fig. 2, the leaf function lwnet from lwdown can be considered as a function to be

inlined but calc radiation surface net is a perfect candidate to apply SCA transformation rules.

Figure 5 is the original code of calc radiation surface net processed by the user with CLAW

SCA directive. Line 6 and 10 are defining the block of field coming from the model. These fields

are often defined globally and therefore have to comply with the memory layout imposed by

the calling model. The compiler then manages whether to apply promotion or not. The block

directive also marks the whole subroutine as a SCA subroutine and thus activates the CLAW

SCA transformation on it.

When a field is promoted or when a parallel iteration is inserted back into the code by

the compiler, the dimension information is taken from the SCA model configuration file. This

TOML formatted file defines the dimensions omitted in ELEMENTAL as well as layouts to

be applied during the promotion transformation. This allows the user to investigate different

data layouts depending on the target architecture. The user can update the default layout in

the configuration file (Fig. 6) or add a layout clause to the model−data directive with the desired

layout. The SCA model configuration file used for JSBACH is shown in Fig. 6. This file is read

by the compiler before applying transformation.

The CLAW SCA transformation applied to non-ELEMENTAL subroutine or function will

modifies the source code for both CPU and GPU targets. Since the original code with ELE-

MENTALs is already suited for CPU target, the extension of the SCA has no effect for this
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1 ELEMENTAL SUBROUTINE c a l c r a d i a t i o n s u r f a c e n e t ( swvis down , swnir down , &
2 a l b v i s , a l b n i r , lw down , t , rad net , swvi s net , swnir net , sw net , lw net )
3

4 USE mo phy schemes , ONLY: lwnet from lwdown
5

6 !$claw model -data

7 REAL(wp) , INTENT( in ) : : swvis down , swnir down , a l b v i s , a l b n i r , lw down , t
8 REAL(wp) , INTENT(out ) : : rad net
9 REAL(wp) , INTENT(out ) , OPTIONAL : : swv i s net , swnir net , sw net , lw net

10 !$claw end model -data

11

12 REAL(wp) : : z swv i s net , z swni r net , zsw net , z lw net
13

14 ! Compute net SW radiation from downward SW and albedo

15 z swv i s ne t = swvis down ∗ ( 1 . wp − a l b v i s )
16 z swn i r ne t = swnir down ∗ ( 1 . wp − a l b n i r )
17 zsw net = zswv i s ne t + zswn i r ne t
18 ! Compute LW net radiation from incoming and the thermal radiation

19 z lw net = lwnet from lwdown ( lw down , t )
20 ! Compute net radiation

21 rad net = zsw net + z lw net
22

23 IF (PRESENT( swv i s ne t ) ) swv i s ne t = zswv i s ne t
24 IF (PRESENT( swn i r ne t ) ) swn i r ne t = zswn i r ne t
25 IF (PRESENT( sw net ) ) sw net = zsw net
26 IF (PRESENT( lw net ) ) lw net = z lw net
27 END SUBROUTINE c a l c r a d i a t i o n s u r f a c e n e t

Figure 5. Original source code for an ELEMENTAL subroutine enhanced with CLAW SCA

directive inserted by the user

1 # CLAW SCA model con f i gu ra t i on fo r JSBACH in ICON
2

3 [ model ]
4 name = ”ICON JSBACH”
5

6 [ [ d imensions ] ] # Def in i t i on o f dimensions t ha t can be used in l a you t s
7 id = ” j s b h o r i ” # Hori zonta l dimension d e f i n i t i o n fo r JSBACH
8 [ d imensions . s i z e ]
9 lower = 1 # i f not s p e c i f i e d , 1 by d e f a u l t

10 upper = ”nc” # Number o f columns
11

12 [ [ d imensions ] ]
13 id = ” j s b s o i l ” # Dimension d e f i n i t i o n fo r the number o f s o i l l a y e r s
14 [ d imensions . s i z e ]
15 lower = 1 # Lower bound
16 upper = ” n s o i l ” # Upper boudn fo r the number o f s o i l l a y e r s
17

18 [ [ l ayout s ] ] # Def in i t i on o f l a you t s and d e f a u l t l ayou t f o r s p e c i f i c t a r g e t
19 id = ” de f au l t ” # mandatory layout , used i f no s p e c i f i c t a r g e t l ayou t
20 # sp e c i f i e d in the sca d i r e c t i v e
21 po s i t i o n = [ ” j s b h o r i ” , ” : ” ] # Inse r t j s b h o r i b e f o r e the e x i s t i n g dimensions
22

23 [ [ l ayout s ] ]
24 id = ” n c n s o i l ” # Name of the l ayou t
25 # Dimension layou t f o r promotion . j s b h o r i and j s b s o i l are i n s e r t e d be fo r e
26 # ex i s t i n g dimensions in the g iven order .
27 po s i t i o n = [ ” j s b h o r i ” , ” j s b s o i l ” , ” : ” ]

Figure 6. CLAW SCA configuration file for ICON model in TOML format
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1 SUBROUTINE c a l c r a d i a t i o n s u r f a c e n e t ( swvis down , swnir down , a l b v i s , &
2 a l b n i r , lw down , t , rad net , swv i s ne t , swn i r ne t , sw net , lw net )
3

4 USE mo phy schemes , ONLY: lwnet from lwdown
5

6 REAL ( KIND = wp ) , INTENT(IN) : : swvis down ( : )
7 REAL ( KIND = wp ) , INTENT(IN) : : swnir down ( : )
8 REAL ( KIND = wp ) , INTENT(IN) : : a l b v i s ( : )
9 REAL ( KIND = wp ) , INTENT(IN) : : a l b n i r ( : )

10 REAL ( KIND = wp ) , INTENT(IN) : : lw down ( : )
11 REAL ( KIND = wp ) , INTENT(IN) : : t ( : )
12 REAL ( KIND = wp ) , INTENT(OUT) : : rad net ( : )
13 REAL ( KIND = wp ) , INTENT(OUT) : : swv i s ne t ( : )
14 REAL ( KIND = wp ) , INTENT(OUT) : : swn i r ne t ( : )
15 REAL ( KIND = wp ) , INTENT(OUT) : : sw net ( : )
16 REAL ( KIND = wp ) , INTENT(OUT) : : lw net ( : )
17 REAL ( KIND = wp ) : : z swv i s ne t
18 REAL ( KIND = wp ) : : z swn i r ne t
19 REAL ( KIND = wp ) : : zsw net
20 REAL ( KIND = wp ) : : z lw net
21 INTEGER : : j s b h o r i
22

23 ! $acc data &
24 ! $acc present ( swvis down , swnir down , a l b v i s , a l b n i r , lw down , t , rad ne t &
25 ! $acc , swv i s ne t , swnir net , sw net , lw ne t )
26 ! $acc p a r a l l e l
27 ! $acc loop gang vec tor
28 DO j s b h o r i = 1 , s i z e ( swnir down , 1 ) , 1
29 z swv i s ne t = swvis down ( j s b h o r i ) ∗ ( 1 . wp − a l b v i s ( j s b h o r i ) )
30 z swn i r ne t = swnir down ( j s b h o r i ) ∗ ( 1 . wp − a l b n i r ( j s b h o r i ) )
31 zsw net = zswv i s ne t + zswn i r ne t
32 z lw net = lwnet from lwdown ( lw down ( j s b h o r i ) , t ( j s b h o r i ) )
33 rad net ( j s b h o r i ) = zsw net + z lw net
34 IF ( present ( swv i s ne t ) ) THEN
35 swv i s ne t ( j s b h o r i ) = zswv i s ne t
36 END IF
37 IF ( present ( swn i r ne t ) ) THEN
38 swn i r ne t ( j s b h o r i ) = zswn i r ne t
39 END IF
40 IF ( present ( sw net ) ) THEN
41 sw net ( j s b h o r i ) = zsw net
42 END IF
43 IF ( present ( lw net ) ) THEN
44 lw net ( j s b h o r i ) = z lw net
45 END IF
46 ENDDO
47 ! $acc end p a r a l l e l
48 ! $acc end data
49 END SUBROUTINE c a l c r a d i a t i o n s u r f a c e n e t

Figure 7. Transformed code with OpenACC directives

target in this case. We rely here on the Fortran compiler to efficiently compile ELEMENTAL

on CPU.

When applied to GPU, the following actions occur for non-leaf subroutine or function:

• The signature of the subroutine/function is updated and the ELEMENTAL or PURE

specifiers are discarded.

• The flagged fields are promoted according to the specified layout. If no layout is speci-

fied, the default layout is assumed. The promotion and layout information come from the

configuration file as shown in Fig. 6.

• Iterations over new dimensions specified in the layout are inserted.

• Data analysis is performed and temporary fields or scalars that need promotion are pro-

moted.

Leaf ELEMENTAL subroutines and functions have simpler transformations applied to them.

The code is processed as follows:
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• As for other ELEMENTAL subroutines/functions, the signature is updated and the EL-

EMENTAL or PURE specifiers are discarded.

• Compiler directives are inserted to set the subroutine or function as an OpenACC routine

or OpenMP target code.

Once the code is annotated with CLAW SCA directives, the CLAW Compiler is called the

same way for file with SCA or SCA with ELEMENTALs. Listing 4 can be executed in the same

way.

3.1. Expansion Directive

As mentioned in Section 1, vector notation is used widely in tasks. To automatize the port

of these blocks of Fortran code to OpenACC and OpenMP, the CLAW expand directive is used.

1 !$claw expand parallel

2 r a d s r f n e t ( : ) = ( 1 . wp − f r a c t l i c e ( : ) ) ∗ r ad ne t lw t r ( : ) + f r a c t l i c e ( : ) ∗
r a d n e t l i c e ( : )

3 sw s r f n e t ( : ) = ( 1 . wp − f r a c t l i c e ( : ) ) ∗ sw ne t lwt r ( : ) + f r a c t l i c e ( : ) ∗
sw n e t l i c e ( : )

4 l w s r f n e t ( : ) = ( 1 . wp − f r a c t l i c e ( : ) ) ∗ lw ne t lw t r ( : ) + f r a c t l i c e ( : ) ∗
l w n e t l i c e ( : )

5 !$claw end expand

Figure 8. Block of vector notation with CLAW expand directive

Figure 9. Expanded vector notation

Figure 8 presents a block of vector notation operations surrounded by a CLAW expand

block. The expand block works only for specific target as the CLAW SCA for ELEMENTAL.

Before the transformation is applied to the block, an analysis is performed to make sure all the

array dimensions are compatible to be transformed within the same loop structure. If the criteria

are met, iteration are inserted on appropriate range and parallelization for the given directives.

Figure 9 is the same code after transformation applied to it.

4. Performance Comparison

In this section we present the performance results that have been achieved by applying the

extended version of the CLAW Compiler to the JSBACH land surface scheme. The compu-

tational domain size (number of horizontal grid points × number of soil layers) used for the

performance measurement is 20480×5. All performance measurements in this section are ob-

tained using −03 optimization flag or equivalent for each compiler. The code is transformed with

the CLAW Compiler 2.0 and compiled with the PGI 18.10 Fortran compiler for the baseline

V. Clement, P. Marti, X. Lapillonne, O. Fuhrer, W. Sawyer

2019, Vol. 6, No. 3 59



CPU as well as the GPU OpenACC results. The CPU reference is obtained using multi-core

OpenMP parallelism available in the original version of ICON. The GPU OpenMP target results

were obtained with Cray Compiler CCE 8.7.4 and by running standalone version of the kernels

since the full ICON model is not ready to have a code mixing OpenMP for multi-core and for

accelerator.

Figure 10 shows the speedup achieved from the CLAW SCA transformed version with Ope-

nACC directives and the CLAW SCA transformed version with OpenMP directives over the

CPU reference. The original version of the code is exploiting the 12 cores available on the Intel

Xeon E5-2690 v3 Haswell CPU of Piz Daint at CSCS parallelized with multi-core OpenMP. The

CLAW OpenACC and OpenMP versions are executed on one NVIDIA P100 GPU. The theo-

retical floating point peak performance of the Intel Haswell is 500 GFLOPS, while the NVIDIA

P100 is 5.3 TFLOPS. In term of memory bandwidth, the Haswell has a theoretical peak at 68

GB/s while the P100 can reach up to 732 GB/s. For both compute and memory bandwidth

limited problem one can expect a maximum speedup of 11x.

As shown, OpenACC and OpenMP results are very similar and expected. Kernels issued

from the ELEMENTAL transformation are pretty simple to be handled by a compiler and we

did not expect PGI and Cray to fundamentally generate different code for them. Depending on

the size of the kernel and the tile it has to process, we are able to achieve speedup between 1.7x

up to 8.6x for kernel like the albedo: calc sky view fractions . Tiles can be viewed as a collection of grid

points from a specific type of land (e.g., lake or glacier) or as a mask for this specific type of

land. Therefore tiles can have more or less work to be performed due to a different set of grid

points. As GPUs need enough work to exploit massive parallelism, a reduced set of grid points

is one of the reason the speedup can vary this much. Another factor is the size of the kernel.

Some ELEMENTAL functions/subroutines are very small and the kernels generated from them

are also small. Kernel’s launch and synchronization is then a non-negligible part of the overall

kernel execution time. These overhead can be hidden in the execution of the full model with

asynchronous mechanism.

5. Code Metrics

This section briefly compares the original code with its CLAW SCA version before and

after applying transformations. Unlike the original SCA the SCA for ELEMENTAL imposes

less changes to the code. In order to comply with the specification, the user only annotates the

ELEMENTAL subroutines and functions to be executed on GPU, and relies on the compiler

from then on. There is no need to apply other code change in the ELEMENTALs.

The full JSBACH model is annotated with 40 CLAW SCA directives and about 130 CLAW

expansion directives to convert vector notation to parallelizable loops. In the transformed code

there are almost 2000 lines of OpenACC directives or OpenMP depending the user’s choice.

This is the amount of compiler directives a user would have had to write by hand to achieve the

same goal. A hand-written version would also have to change the code structure significantly,

for example by promoting fields and adding loops.

Conclusion

In this paper we propose an extension of the CLAW SCA DSL and its compiler to take

advantage of the ELEMENTAL construct in Fortran code and automatize the port to heteroge-
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Figure 10. Performance comparison (socket to socket) between CLAW OpenACC, CLAW

OpenMP and the CPU reference of kernels from two JSBACH tasks on Intel Haswell E5-2690v3

and NVIDIA P100. Domain size (number of horizontal grid points × number of soil layers) =

20480×5

nous architecture. The ELEMENTAL construct as exploited in JSBACH provides the necessary

abstraction to implement automatic code transformation and target GPU architectures with-

out writing lots of compiler directives by hand. Promotion, loop parallelization and compiler

directive generation are handled by the CLAW Compiler automatically.

For this paper, the CLAW SCA extension was applied to a wide portion of the JSBACH

land surface scheme, one of the physical parametrizations of the ICON global climate model.

From a single simple source code multiple programming paradigm can be targeted. Performance
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results show up to 8.6x speedup against a 12-core parallel CPU version for a specific kernel. All

kernels are a least 1.7x faster than the CPU version. The overall performance of the JSBACH

model running on GPU is typically between 5x to 6x speedup depending on its configuration.

In the current implementation of the extension, a single parallel subroutine or function

is generated from its ELEMENTAL counterpart. This is fine for the JSBACH use case as a

single ELEMENTAL is always called with the same kind of arguments. Future improvement to

generate several versions of a subroutine or a function if the type of argument used to call them

is different.

As it is possible to generate any source code, we can imagine to take advantage of new

compiler development such as exploiting the DO CONCURRENT construct from Fortran 2008 to

target accelerators as it is investigated in latest version of PGI. Instead of generating compiler

directives the CLAW Compiler could exploit this new Fortran feature.
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