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This review is based on the peer–reviewed research literature including the author’s own

publications devoted to supercomputer docking. The general view on docking and its role at the

initial stage of the rational drug design is presented. Molecules of medicine compounds selectively

bind to the active site of a protein, which is responsible for the disease progression, and stop it.

Docking programs perform positioning of molecules (ligands) in the active site of the protein and

estimate the protein–ligand binding energy. The larger this energy is, the less concentration of

the respective compound should be used to observe the desired effect. Several classical docking

programs are described in short. Examples of the adaptation of existing docking programs to

supercomputing and using them for virtual screening of millions of ligands are presented. Two

novel generalized docking programs specially designed for multi–core docking of a single ligand on

a supercomputer are described shortly. These programs find a sufficiently wide spectrum of low

energy minima of a protein–ligand complex in the frame of a given force field. The quasi–docking

procedure using the generalized docking program is described. Quasi–docking allows to perform

docking with quantum–chemical semiempirical methods. Finally a summary is made based on the

materials presented.

Keywords: docking, protein–ligand, global optimization, tensor train, force field, quantum–

chemical method.

Introduction

Docking programs are extremely demanded for the computer aided structural based

drug design [78, 80]. The latter is used at the initial stage of the long (10–15 years)

and expensive (> 1 billion USD) rational drug design pipeline. This initial stage is the cheapest

of all the following stages: preclinical testing (animals), three phases of clinical stages (humans),

approving and post approving stages, but the initial stage plays the key role in the whole pipeline

success defining the diversity of the active compound–candidates, their selectivity and low tox-

icity. The main idea of the rational drug development is to find a compound, the molecules of

which bind specifically to a definite region (active site) of the given bio–molecule, e.g. a protein,

responsible for the disease progression, and stop or change the latter. The larger this binding

energy is, the lesser concentration of the active compound should be used to achieve the desired

effect. Docking programs carry out positioning of the molecules–candidates (ligands) in the def-

inite site of the target protein and calculate the protein–ligand binding free energy [95] which is

directly connected with the measured binding (dissociating) constant of the active compound.

There are several dozen of docking programs and a dozen of Internet docking sites available

either for free or on a commercial basis [14, 66]. Despite the obvious progress of the docking

technique and plenty of success stories, there are still various challenges [9, 96, 107]. While in

many cases positioning accuracy of docking is satisfactory, the accuracy of binding energy cal-

culations is insufficient to perform the hit–to–lead optimization on the base of docking results.

The increase of docking accuracy should result in an increase in the effectiveness of the whole

process of new drug development [90].

The work of many docking programs relies on the docking paradigm which assumes that

the ligand binds in the active site of the target protein at the global energy minimum of the
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protein–ligand system [60, 61]. Thus, the docking problem turns into the global optimization

problem. The main challenge of docking is a high dimensionality and complicated relief of the

energy surface where the global energy minimum should be found. For example, a therapeutic

molecule often has 10 internal rotational degrees of freedom (torsions). Thus, the protein–ligand

system energy surface has 16 = 10+6 dimensions where 6 dimensions correspond to translations

and rotations of the ligand as a rigid body. This case corresponds to the rigid target protein.

However, if protein flexibility is taken into account, the dimension of the protein–ligand energy

surface increases in line with additional number of protein degrees of freedom, e.g. for every

mobile protein atom additional 3 dimensions, atom Cartesian coordinates, should be added. On

the other hand, such a docking program should be able to perform docking of many ligands

for the reasonable period of time. This contradiction results in many different simplifications

implemented in docking programs, especially at the dawn of the docking technique develop-

ment 25− 30 years ago when available computer resources were very limited. The “Faster, even

faster” mantra long time was the main goal of docking algorithms and some of popular docking

programs can dock one ligand at one processor for less than 1 minute even less, e.g. the ICM

program can run docking of one ligand for 10 seconds [57]. However over time, more attention

has been paid to the docking accuracy, and in some popular docking programs, for example in

Glide, in addition of Standard Precision (SP) calculations the Extra Precision mode (XP) has

been added [27], and the latter needs much more computing resources. If program docks one

ligand at one computing core for the time of half an hour or longer, the use of this program

for virtual screening of large databases containing many thousands of ligands inevitably needs

supercomputer resources. On the other hand, either for the too complex form of the protein

active site and respective complicated protein–ligand energy surface or for the too large number

of ligand torsions it might be needed to increase considerably the thoroughness of the global en-

ergy minimum search at the expense of a large increase of the docking time of one ligand. This

increase can be compensated by the multi–processor performance of the docking program at

several dozen or hundred computing cores of a supercomputer. Additional processing of docking

results can also demand supercomputer resources especially if the protein–ligand binding energy

refinement needs an employment of molecular dynamics (MD) or quantum chemistry (QC) [51].

Actually MD methods have not been used for virtual screening of large ligand databases, but

these methods of the protein–ligand binding free energy calculation are applied usually at the

post–docking stage for a further refinement of the binding energy of best selected ligands and to

optimize them. MD methods being applied to the binding free energy calculations have a lot of

specific features and tricks [45], e.g. artificial lowering of energy barriers, and a detailed descrip-

tion of all of them needs a lot of space and it is out of the scope of this review. We only note here

several points. First, MD methods and docking have some common features defining accuracy

of the calculations and the most important one is the energy calculation method using either a

force field or a quantum chemistry method. Second, calculations of the absolute protein–ligand

binding free energy is a much more challenging problem than calculations of the relative binding

energy and in most publications just the latter is calculated with MD [105]. Third, most of these

MD methods sample the Boltzmann distribution of molecular confgurations coupled to a heat

bath at a given temperature, and same sampling can be done also with Monte Carlo simula-

tions [16]. Fourth, there are several methods to perform the protein–ligand binding free energy

calculations [46], and the most widely used ones are thermodynamic integration (TI) [28, 42, 53]

and free energy perturbation (FEP) [19] methods, as well as the recently proposed enveloping

A.V. Sulimov, D.C. Kutov, Vl.B. Sulimov

2019, Vol. 6, No. 3 27



distribution sampling (EDS method [70, 75]; a recent survey of the state of art of the binding free

energy calculation method is presented in [54] (see also a perpetual review of David L. Mobley, et

al. at https://github.com/MobleyLab/benchmarksets/blob/master/paper/benchmarkset.pdf).

Fifth, the protein–ligand binding affinity can be associated with the ratio of kinetically de-

termined rates koff and kon of complex formation [44] and MD simulation of binding kinetics

can become a useful tool to get insight of a mechanism of protein–ligand binding [67]. Sixth, MD

penetrates into the docking technology in different ways from prior generation of an ensemble

of protein conformations to take into account protein flexibility performing docking into discret

rigid pre–generated protein conformations (ensemble docking) to the so–called solvent mapping

for the identification of binding sites and hot–spots on protein surfaces [18, 24, 30]. Some addi-

tional recent examples of ensemble docking can be found in [2, 3, 5, 22, 23, 82, 86, 106]. All these

methods require large computational resources and supercomputing power should be demanded

along this road.

Quantum chemistry (QC) plays an important role in modeling for drug design. However,

for the energy calculation in docking proper QC methods have not been used until recently.

The latter is connected with the inability of QC programs, based on ab initio including DFT

methods, to perform calculations of molecular systems containing thousands of atoms. Even the

model of a protein–ligand complex reduced to 5–6 hundred atoms containing only the ligand and

the active site of the target cannot be used for docking with QC ab initio methods due to the

time limitation and limited capacity of multi–processor performance. Nevertheless, some recently

developed QC semiempirical methods together with the localized molecular orbitals method can

be used for post–docking refinement of the energy of the different conformations of the protein–

ligand system (see below the “Quasi–docking” section). The QM/MM approximation where the

most important part of the molecular system is treated with QC methods (QM abbreviation) and

the rest of the system is described at a level of classical molecular mechanics (MM abbreviation).

For example, QM/MM was used in [4] for the post–docking optimization of the protein–ligand

system using the old AM1 semiempirical method, and the best ligand poses were found at the

preliminary step by docking with the AutoDock program. Despite the good results demonstrated

in [4] eclecticism of this attempt are obvious because docking is performed in the frame of an

empirical oversimplified AutoDock force field (a set of classical potentials describing inter– and

intra–molecular interactions), MM part is calculated with another, Charmm, force field and

for QM part the AM1 method badly describing hydrogen bonds and dispersion inter–molecular

interactions [102] is used. Different approaches of QC used for the binding affinity refinement

in post–docking processing can be found in [15, 41, 77]. So, QC–docking and QC molecular

dynamics for the accurate protein–ligand binding free energy calculations are still waiting for

their realization, and this will happen in near future due to supercomputer facilities. QC methods

are also used either for creation of whole force fields or for improving existing force fields, by

modifications of atomic charges on the base of QC calculations. The most widely recognized

example of the latter is the GAFF force field [104] where atomic charges are calculated with

QC, and Van der Waals parameters are taken from the empirical potentials. Some examples

of this approach are also presented in [8, 103], but there are much more. However, we should

note that atomic charges are the part of a whole set of force field parameters describing inter–

and intra–molecular interactions, and these parameters must be obtained in a self–consistent

manner.
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The molecular models of the target protein and ligands are very important for the proper

docking performance, as well as MD calculations. 3D structures of proteins and protein–ligand

complexes stored in Protein Data Bank [6, 13] do not usually contain hydrogen atoms. Hydrogen

atoms are added to the protein structutes with the help of a particular programs. The resulted

3D structures obtained after such different programs performance are different from one another,

and this influences strongly on docking [47] due to the difference in the spatial positions of the

added hydrogen atoms and due to difference in the protonation states of some amino acids

residues. The best way to define protonation state is based on QC calculations but usually

this is done with standard rules for separated amino acids. Certainly, results of ligand docking

also strongly depends on their protonation states, as well as on enantiomery, tautomerism, and

in general QC methods (taking into account electron correlation at sufficiently high ab initio

level) should be used for a proper preparation of the respective enantiomers and tautomers

together with low energy stereoisomers of a given ligand. The latter is closely connected to

the determination of the lowest energy conformation of the unbound ligand in water solution

defining the ligand internal stress energy which is an important term of the binding free energy.

Unfortunately, in many cases QC methods still are not used for these purposes. Some examples

are presented in [10, 11, 40, 68].

Nowadays machine learning invades many areas of science, and docking is not an exeption.

For example, convolutional neural networks (CNNs), which are commonly used in the image

recognition [50], are applied in [71] to the construction of the scoring function to descriminate

between correct and incorrect ligand binding poses and known binders and nonbinders, and

it is shown that the CNN scoring function outperforms the AutoDock Vina one. The more

sophisticated use of deep learning is presented in [49] where RAVE method (the reweighted au-

toencoded variational Bayes for enhanced sampling) [74] is used for calculating absolute protein–

ligand binding free energies. Other recent examples of machine learning application to docking

and scoring are presented in [58, 59, 69, 99]. In connection with this dawn of new era of ma-

chine learning application we should make a remark that databases of experimentally measured

protein–ligand binding affinities contain many hidden uncertainties and sometimes errors, and

before their use for macine learning, these databases should be strongly and cleverly filtered.

Considering that reviews on classical (non–supercomputer) docking programs are published

regularly [14, 66, 96, 107], we review here mainly works devoted either to development of super-

computer docking programs, or to the application of supercomputers to virtual screening of large

databases of ligands and refinement of docking results. We restrict this review by only docking

of small molecular weight ligands into proteins. The protein–protein docking is out of the scope

of this work, but all problems discussed here especially protein flexibility and docking accuracy

are key features of such docking programs. Two examples of a protein–protein docking program,

supercomputer docking and webserver, are presented in [62, 110]. Firstly, we take a look at the

docking problem and consider examples of classical docking programs and their peculiarities.

Secondly, we present a review of publications on docking in conjunction with supercomputers.

Finally, some concluding remarks are presented.

1. Docking: General View

For brevity we will call as inhibitors those molecules (ligands) that bind to a given target

proteins. Inhibitors block functioning of the target proteins, but in general ligands upon binding

can activate target proteins or change their work. Usually a low molecular weight ligand contains
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several dozen atoms. Target proteins contain several thousand atoms, and 3D structures of many

target proteins, Cartesian coordinates of all protein atoms, can be free downloaded from the

Protein Data Bank (PDB) Web–site (https://www.rcsb.org) [6, 13]. This database contains now

more than 150 thousand entries of biological macromolecular structures (protein, DNA, RNA)

and their complexes with ligands.

Docking is used to discover non–covalent inhibitors of a given target protein. This means that

a ligand and a protein are bound with one another by weak inter–molecular interactions, this

binding is reversible and the protein–ligand binding free energy ∆Gbind is directly related to the

binding constant kb associated with protein [P ], ligand [L] and their complex [PL] concentrations

in water solvent:

kb =
[PL]

[P ]× [L]
= e

−∆Gbind
RT , (1)

where the dimensionality of the binding constant is mol/L, R is the universal gas con-

stant, and T is absolute temperature in K. The binding free energy is defined as

∆Gbind = GPL −GP −GL, where GPL, GP andGL are Gibbs free energies of the protein–ligand

complex, the protein and the ligand, respectively. In its turn the Gibbs free energy of a molecular

system X can be calculated through the respective configuration integral ZX = −RTln(GX)

which is calculated over the phase space of the molecular system X. If the low energy relief

of the molecular system X is known, the configuration integral can be calculated. Moreover, if

the global energy minimum is notably (comparing with kT ) stands out by its energy in respect

with energies of other low energy minima, the molecular system spends most time in the global

minimum, and the configuration integral and corresponding Gibbs free energy of the system is

defined by only the global energy minimum value and by the form of the respective energy well.

In many cases target proteins can be considered as rigid systems and the global energy

minima search should be performed for only the protein–ligand complex and for the unbound

ligand while the energy of the unbound protein is calculated for only one its configuration defined

by atom coordinates taken for PDB. PDB–files usually contain only coordinates of heavy (non–

hydrogen) atoms. Several thousand hydrogen atoms should be added to the protein structure

using the appropriate program. Note that different programs add hydrogen atoms by different

ways which result, first, in different protonation (charge) states of some molecular groups, the

so–called titrated groups, and, second, in various hydrogen atoms positions, i.e. the covalent

bonds of these hydrogen atoms can be differently oriented in space. These differences in spatial

positions of added hydrogen atoms lead to different docking results and to different results of

binding energy calculations [47].

One of the most important challenge of docking is the choice of the method of the molecular

energy calculation which should include both inter– and intra–molecular interactions, as well

as take into account the interaction of molecules with the water solvent. Quantum mechanics

(QM) or, what is the same, quantum chemistry should be used to describe molecular interactions

properly. However, these methods could not be used until recently for the molecular systems

containing several thousand atoms. Instead QM methods classical potentials, force fields, de-

scribing interatomic interactions are used. There are plenty of force fields created for the classi-

cal molecular dynamics simulations and docking: AMBER [104], CHARMM [7], MMFF94 [32],

OPLS–AA [39], etc., which describe molecular interactions sufficiently satisfactorily but not

without some faults in different particular cases.
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However, even such a dramatic simplification as a changeover from QM methods to force

fields is insufficient for the realization of the docking procedure as a global energy minimum

search. The calculation of all pairwise interactions between all ligand atoms and all protein

atoms for every protein–ligand complex configuration in the frame of any force field mentioned

above is computationally too costly. Apart from strong simplification of force fields a model of

preliminary calculated grid of potentials is implemented in many docking programs: potentials

of ligand probe atoms interactions with the all protein atoms are calculated and stored at

nodes of the grid covering the active site of the target protein. Then, in the course of the

global energy minimum search the energy of the ligand in any position in the active site of

the protein is calculated as the sum of the grid potentials over all ligand atoms. This grid

approximation gives a large acceleration because all resource–intensive operations are performed

at the grid calculation stage before the global optimization. However, the grid approximation

restricts docking and its accuracy in several aspects. Firstly, it is impossible to make sufficiently

accurate local optimization of the protein–ligand energy with variation of ligand atoms positions.

Secondly, it is impossible to take into account mobility of protein atoms in the docking procedure.

Thirdly, water solvent plays an important role in molecular energy calculations due to the high

dielectric constant of water (78.4 at the room temperature) and respective strong screening

of Coulomb interactions; in order to avoid to take into account thousands of explicit water

molecules, implicit solvent models are used instead. In the frame of these models water solvent

is described by a homogeneous dielectric continuum surrounding a molecule of solute and the

nonlocal interactions of atom charges of the solute molecule with polarization charges on the

solvent excluded surface (SES) cannot be sufficiently accurately reduced to predetermined local

potentials at grid nodes. Fourthly, the fast increase of computing power will soon lead to the

opportunity to utilize QM methods in docking, but such self–consistent methods cannot be used

in the frame of the grid approximation.

The will to avoid the grid approximation, to use implicit solvent models, to take into account

flexibility of ligand and protein simultaneously and by this to increase the docking accuracy leads

to necessity to draw larger computer power for docking of one ligand and to the transition from

notebook docking to supercomputer docking. Before the discussion of supercomputer docking

in the next section we describe shortly some examples of popular classical docking programs to

outline their limitations and to contrast them with supercomputer docking programs. The more

or less exhaustive reviews of such docking programs are presented in [14, 66, 96, 107].

1.1. AutoDock

This is the most popular docking package [14]. It is a free opensource code actually including

two main docking engines employing a pre–calculated grid of potentials of probe ligand atoms

interactions with the target protein: AutoDock Vina [98] and AutoDock [26, 56], and also

auxiliary programs Raccoon2 (a graphical tool), AutoDockTools for the preparation of molecules

and for the analysis of docking results and AutoLigand for predicting optimal sites of ligand

binding. AutoDock Vina and AutoDock use stochastic methods for the global energy minimum

search and the docking algorithms work mainly for the rigid protein model, although a possibility

of taking into account protein flexibility is also implemented in AutoDock [55]. However the latter

can be used only for very limited number of degrees of freedom: ligands should have less than

10 torsions and additional six degrees of freedom of two protein side chains. Actually ligand

flexibility is described by only ligand torsions while bond lengths and valence angles are kept
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fixed. AutoDock Vina uses an oversimplified empirical energy function and the conformational

search is based on a gradient local optimization method. The energy function of AutoDock

Vina does not contain the Coulomb term and consequently it considers electrostatic interactions

only implicitly through the hydrophobic and the hydrogen bonding terms, it uses spherical

potentials for hydrogen bonds and treats hydrogen atoms only implicitly. AutoDock uses more

sophisticated but also a simplified empirical force field including directed hydrogen bond terms,

explicit polar hydrogen atoms and Coulomb and van der Waals interactions and desolvation

effects are treated in a very simplified local potential form. AutoDock uses the Lamarckian

genetic algorithm for the global energy optimization [55]: a population of trial individuals,

ligand conformations, is created, and then in successive generations these individuals mutate,

exchange conformational parameters through the crossingover procedure, and compete on their

energy selecting individuals with lowest energy, and the“Lamarckia” feature allows individual

to search their local conformational space, finding local minima, and then pass this information

to later generations.

1.2. DOCK

This is the oldest docking program which was created more than 35 years ago. The initial

version of this program perform rigid docking by matching ligand and receptor shapes on a

steric overlap. Subsequently a force field, the energy minimization, solvent, ligand and protein

flexibility, multiprocessor performance were implemented in it [1, 12]. The orientation search of

ligand poses is performed by matching ligand heavy atoms to matching points inside the docking

domain. The matching points are generated by filling the docking domain with spheres of varying

radii (1.4− 2.5 Å); centers of these spheres become matching points. The preliminary calculated

grid of potentials of probe ligand atom interactions with all protein atoms is used. There are

different energy (scoring) functions: from simplest bump filtering that counts the number of

van der Waals clashes between ligand and protein atoms and discard ligand poses that exceed a

predetermined threshold to the energy score defined by Lennard–Jones and Coulomb potentials

of the AMBER force field together with desolvation scoring based on the Generalized Born or

the Poisson–Boltzmann implicit solvent models for the polar solute–solvent interaction plus the

solvent accessible surface area (SASA) approximation for the non–polar term of the desolvation

energy. The latter is a linear form of SASA. In the process of finding low–energy minima DOCK6

uses a combination of global sampling and a local energy minimization performed by the simplex

method: rigid docking, including docking of different rigid ligand conformers, plays a central

role in the performance of DOCK6, and the found ligand poses can be used for the further local

energy minimization and MD simulation. The Anchor–and–Grow algorithm for flexible ligand

docking is a distinguishable core feature of the DOCK6 program. A ligand is disassembled into

non–flexible fragments connected by rotatable bonds. The largest fragments (anchors) are used

to generate a set of possible anchor poses within the binding site. From these poses of each anchor

a search for possible conformations of the ligand flexible parts is performed, and rigid fragments

are flexibly attached to the anchor in layers until the whole ligand is reconstructed. When each

ligand fragment is grown, the conformer with minimal energy is selected before proceeding to

the next growing step. A key advantage of this algorithm is that the ligand conformation is left

within the confinements of the binding site, radically reducing the conformational space of the

search.
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1.3. SOL

The main features of this program are [91, 95]: (i) rigid protein model; (ii) protein active

site is represented by a grid of potentials describing interactions (electrostatic, van der Waals

interactions) of all protein atoms with all possible types of ligand probe atoms in the frame of

the MMFF94 force field practically without serious simplifications; (iii) inclusion of desolvation

effects on the base of a simplified form of Generalized Born approximation [76, 85] allowing

to store the corresponding desolvation potentials at nodes of the preliminary calculated grid;

(iv) genetic algorithm is used for the global energy optimization; (v) ligand stress energy is

taken into account in the frame of MMFF94 during the global optimization, i.e. the objective

energy function of the global optimization consists of two terms: the ligand energy in the

field of all protein atoms and the ligand stress energy. The latter is the energy of the ligand

deformation. The desolvation energy is defined by the difference of the solvation energy of the

bound protein–ligand complex and solvation energies of the unbound protein and ligand. The

effect of desolvation is due to the fact that when a ligand binds to a protein, some of the surface

protein and ligand atoms stop interacting with the solvent, water.

The docking region is defined by the position of the grid of preliminary calculated potentials.

The grid is created in the cube (the docking cube) covering the whole protein active site. By de-

fault the cube edge is equal to 22 Å, and the cube contains 101×101×101 uniformly distributed

grid nodes. The size and the position of the cube center are user defined. During docking per-

formed by the global optimization a ligand can be randomly positioned at any pose inside the

docking cube and it can have any conformation defined by random variations of torsions keeping

fixed ligand bond lengths and valence angles. The grid is calculated by the SOLGRID module

before the global optimization process. Opposite to many popular empirical force fields such as

AMBER, CHARMM, OPLS–AA, the MMFF94 force field is considered as a physical ab initio

force field because all its parameters are fitted to the results of ab initio quantum–chemical

calculations for a broad set of organic molecules. MMFF94 has a well–defined procedure of the

atom typification applicable to an arbitrary organic compound. This typification defines the force

field parameters for any target protein and for almost any ligand. The atom typification, as well

as the hydrogen atoms addition are made by the APLITE program. For SOLGRID calculations

the MMFF94 atom typification is somewhat simplified up to 27 atom types (instead of 99 types)

to keep the potentials in the computer RAM memory. So, the grid contains in its nodes 27 van

der Waals and 27 Coulomb potentials of interactions of a respective ligand probe atom with all

protein atoms and respective desolvation potentials. Note, that van der Waals potentials defined

by equations of the MMFF94 force field undergo some broadening (≈ 0.3 − 0.5 Å) which can

be defined in the set of SOLGRID input parameters. Broadening imitates restricted mobility of

protein atoms. SOLGRID consumes from 1 to several hours at one computing core depending on

the target protein size, and a binary file of about 200Mb is created. When the docking procedure

is executed by the SOL module the ligand energy in the field of the protein is calculated as a

sum of grid potentials of all ligand atoms corresponding to each ligand pose in the docking cube.

A potential in the position of a given ligand atom is obtained by the interpolation of potentials

in eight neighbouring grid nodes.

The SOL docking program works in accordance with the genetic algorithm as follows. First,

the initial population of individuals (ligand poses in the docking cube) is created by random

translations and rotations of a ligand as a rigid body and by a random generation of ligand

torsions in their domains. The population size is the main input parameter of SOL, and it is
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equal to 30000 by default. Then the total energy, the sum of the ligand grid and stress ener-

gies, is calculated for each of individuals and the latter are ranked in respect with their total

energies. The individuals (ligand poses) with lowest values of the total energy are selected into

the so–called mating pool where they take part in the creation of the population of the next

generation through the crossingover, mutations and direct translation keeping the population

size fixed. Several individuals with the lowest energies are translated to the next generation

without any change to be sure that the best ligand poses will not be lost in the next generation.

Niching is used to choose diverse individuals in the mating pool. The niching procedure is im-

plemented as a positive energy penalty given to a ligand pose which is close to the ligand pose

that has been already chosen into the mating pool. Niching helps to avoid the degeneration of

the population when all individuals are collected in one local energy minimum. After a given

number of generations (1000 by default) the genetic algorithm stops and the individual (the

ligand pose) with the lowest energy is taken from the last generation. This is the solution of

the global optimizations problem: finding the ligand pose with the lowest total energy. Several

(50 by default) independent runs of the genetic algorithm are performed to get some confidence

in the reliability of the global optimization. All 50 ligand poses are clustered in respect with

their positions: two ligand poses belong to one cluster if RMSD between their corresponding

atoms is less than 1 Å. If population of the first cluster containing the ligand poses with lowest

energies is sizeable and the number of clusters is small, the ligand pose with the lowest energy

from the first cluster is considered a reliable solution of the global optimization problem. If

there are many clusters and there is only one ligand pose in the first cluster, the solution of the

global optimization problem is considered as unreliable and optimization procedure should be

repeated with higher parameters of the genetic algorithm, mainly with larger population size

and with more generations. SOL executes docking of one ligand with default genetic algorithm

parameters for several hours at one computing core depending on the number of ligand atoms.

First application of SOL in drug design has been made during discovery of new thrombin in-

hibitors [79]: more than 6000 ligands have been docked by SOL using X–Com grid technology,

developed at the Research Computer Center of Moscow State University [25, 81]. Later the MPI

multi–processor implementation of SOLGRID and SOL programs [91] make it possible to gener-

ate the grid of potentials, as well as to dock one ligand for less than 1 minute using several dozen

computing cores. On the other hand, for the virtual screening of large ligand databases (dozens

and hundreds of thousands of molecules) SOL can run on the Lomonosov supercomputer [100]

distributing ligands over hundreds and thousands computing cores and docking one ligand per

one core. Certainly some auxiliary scripts and programs are created to queue up respective jobs

and to analyze the docking results. There is a number of success stories of the application of

these three docking programs and other ones in computer aided structural based drug design

and some of them are presented in [96].

2. Supercomputer Docking Programs

In spite of existence of many docking programs, only a relatively small subset of molecular

docking codes have been ported to use many–core high performance architectures, such as GPUs

or Intel’s Xeon Phi. The employment of supercomputer for docking pursues two main goals: to

screen as many ligands as possible during a short period of time, and to dock one ligand as

accurately as possible. The increase effectiveness of these multi–processor calculations is also an

important technical problem.
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2.1. Faster and Larger

Modern chemistry opens its almost unlimited space of small molecular weight ligands for

drug design creativity. Millions of on–shelf compounds are now available for different libraries and

databases. Much more virtual molecules can be generated, but the possibility of their synthesis

is questionable in many cases. All these ligands can be used as a starting pool of candidates for a

given, especially new, target protein at the initial stage of the drug development giving a diversity

of hit compounds and their optimization results in a diversity of lead compounds. In this section

we present several examples of adaptation of existing docking programs to supercomputers for

the virtual docking screening of thousands and millions of ligands.

2.2. HSP–DOCK

One of the challenges of supercomputer docking is to create the infrastructure that would

allow anyone the ability to dock as many ligands as possible and as quickly as possible. One

solution of this problem is presented in [97] where using profiling optimization with the help

of a specially designed software “wrapper” called HSP–DOCK authors are able to dock large

numbers of ligands efficiently with the widely used DOCK6 program on a large, non–shared

memory NICS Kraken supercomputer system: a cluster computer made up of SMP (symmetric

multi–processor) nodes [73]. When compared with the standard distribution of MPI multi–

threading with DOCK6, HSP–DOCK showed near–linear scaling to the number of cores available

to it, without necessitating the modification of the DOCK algorithm code itself. Here are some

details of this docking experiment. Four different target proteins were chosen. A library of 1.4

million lead–like molecules from ZINC database was docked against each target. In this case

lead–like compounds have the number of torsions ≤ 7, and molecular weight of less than 350Da.

The targeted site of each protein was based on known biological interactions and refined further

using MOE’s site finder utility providing precise docking decoys along with propensity for ligand–

binding scores. The resulting dataset was analyzed for electrostatics (ES), van der Waals (V DW )

and GRID (the summation of ES + V DW ) scores. Docking is benchmarked on two different

computer setups including a small academic cluster and a massively parallel supercomputer: the

Medical University of South Carolina Computational Biology Resource Center (MUSC CBRC

using MPI–DOCK) cluster of 46 nodes and the National Institute of Computer Science (NICS)

Kraken Cray XT5 with 112896 cores (using HSP–DOCK). It is found that the DOCK6 standard

MPI version does not scale well on tens of thousands of cores, or when the library of ligands

grows into the millions. MPI scaling becomes inefficient because I/O contention and saturation

of the master process causes the cluster to spend more time waiting for I/O tasks than carrying

out computations. HSP–DOCK dynamically schedules workload distribution to individual nodes

to optimize output routines, reducing I/O thrashing and increasing time spent in computation.

The MUSC CBRC mean time to dock one ligand per one core was 88s to be compared with

20 s on Kraken. It takes ∼ 17 h using 32000 cores of Kraken to dock 50 million flexible ligands

into a single target protein. However such large scale docking leads to the need of the posterior

analysis of the docking results. Examples presented in this study show that after docking of

1213412 compounds into one target protein there are 57017 hits, i.e. ligands with a score better

than a specified threshold. For other investigated targets the number of hits is of the same

order: 1 − 5 % of all successfully docked compounds. The necessity of further elaborations of

several dozen thousand hits either with more accurate docking program or with bioinformatics
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becomes obvious. One may wonder to perform more accurate docking from the beginning, but

it needs much more computing resources and another organization of such massive docking. So,

the example presented in [97] demonstrates the possibility of fast and effective virtual screening

of very large databases of compounds using the DOCK6 docking program without any changes

of the code with the help of a software “wrapper” HSP–DOCK on the supercomputer Kraken

Cray XT5 of the National Institute of Computer Science.

2.3. BUDE

Another example of a supercomputer multi–core docking program is the Bristol University

Docking Engine (BUDE) [52]. The special thrill of BUDE is a high effective realization for a

supercomputer performance and compatibility with different types of hardware. It is adapted

for modern day accelerators and it has highly optimized computational kernels for the docking

and scoring functions using OpenCL, which are capable of sustaining a significant fraction of the

hardwares peak performance. Exploiting OpenCL enables performance portability across a wide

range of different computer architectures, including CPUs, GPUs and accelerators. BUDE has

undergone extensive optimization, and can sustain over 40 % of floating point peak performance

on a wide range of different architectures. The main features of BUDE is the energy minimization

algorithm which is based on the Evolutionary Monte Carlo (EMC) techniques described in [29].

This genetic algorithm based optimization is performed in the space of the six degrees of freedom

– the rigid protein and ligand approximation and a tuned empirical free–energy force field is

employed for predicting the binding pose and for estimating the protein–ligand binding energy.

In the course of a single ligand conformation docking BUDE evaluates the binding energies for

hundreds of thousands of ligand poses, and each pose is evaluated independently. The optimized

version of BUDE is several times faster than the previous non–optimized version of BUDE on

eight different hardware with either GPU or CPU: NVIDIA GTX 680, NVIDIA GTX 780 Ti,

NVIDIA Tesla K20c, AMD Radeon HD7970, AMD Radeon R9290X, AMD FirePro S10000,

Intel Xeon Phi SE10P and Intel E5 − 2687W (x2). For example the optimizations developed

for the GTX 780 Ti have demonstrated the biggest improvement of the Nvidia GPUs with a

4.5× increase over the baseline version of BUDE. The optimized BUDE code achieves 44 billion

atom–atom interactions/s on the GTX 680, taking 37 s to dock the 128 conformations (∼ 0.3 s

per conformation). It achieved a sustained performance of 1.43 TFLOPS when measured across

the entire BUDE run, representing 46 % of the peak single precision performance of the device.

The obvious drawback of this work is a too simplified docking model but it shows a direction of

possible improvements of performance of any docking program.

2.4. VinaLC

This program is specially designed for the multi–core supercomputer performance with the

goal to carry out virtual screening of very large ligand databases by docking [108]. VinaLC

is the realization of the AutoDock Vina docking program [98] that is enhanced by a mixed

parallel scheme, where within each node multithreading is used, and across different nodes an

MPI parallel scheme is applied. VinaLC was developed and tested on petascale supercomputers

at Lawrence Livermore National Laboratory. It scales up to 15408 CPU cores demonstrating

overheads of less than 4% and it is able to dock 17 million flexible ligands on 15408 cores during

24 hours. The docking accuracy of VinaLC defined by a model implemented in AutoDock Vina
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was investigated in [108] using the Directory of Useful Decoys (DUD) dataset [35] and the

reassuring results were obtained.

AutoDock Vina was implemented and tested later [38] on four different HPC infrastructures

available to academic researchers in the Netherlands: an 8− core virtual machine on the Dutch

Academic HPC cloud, a local cluster at the Academic Medical Center of the University of Ams-

terdam with 128 cores, the Hadoop cluster for scientific research consisting of 90 data/compute

nodes (adding up to more than 1400 cores) and has a distributed file system with a capacity

of 630 TB, and the Dutch eScience grid which includes a dozen PBS (portable batch system)

clusters all around the Netherlands (>10000 cores). These HPCs were employed to perform

virtual screening of about 100000 compounds from ZINC [36] and other libraries investigating

parallelism, docking time, etc.

Some details of a more recent use of AutoDock Vina for virtual screening are presented in [20]

(docking on the Salomon (Czech Republic) supercomputer) and in [33] (docking on the peta–

flops–scale Anselm supercomputer https://www.it4i.cz). Another example of the adaptation of

the docking program from AutoDock family was presented in [21], where AutoDock4.lga.MPI

was used to dock 1 million compounds. Details of MPI–realization of the AutoDock4.lga.MPI

program were presented in [17], but in [21] particular attention was paid to the optimal orga-

nization of docking of millions of ligands on thousands of processors when file preparation and

result analysis define the effectiveness of the whole virtual screening job. Among others the clus-

terization of ligand poses found in independent runs plays an important role in the revelation of

best pose and finding best binders among millions of candidate molecules. As a result 1 million

ligands having from 0 to 32 torsions (but only 5 % of the database are ligands with at least 10

torsions) have been docked on the Jaguar Cray XT5 Supercomputer at Oak Ridge National

Laboratory using 65 thousand processors. This job took almost 24 hours, but nearly the whole

database was screened in 10 hours and only docking of extremely flexible ligands increased the

total time.

As predecessor of supercomputer docking, the grid technology should be mentioned. One

example of such distributed docking calculations on large scale grids is presented in [37] where

two docking programs, AutoDock and FlexX [72] were used for virtual screening millions of

ligands against two targets to struggle with malaria and avian influenza.

2.5. More Accurate

Some efforts have been undertaken in attempts to understand main reasons of unsatisfactory

reliability of most of docking programs and to improve the docking accuracy. The quick increase

of available supercomputer resources gives a fortunate opportunity for such investigations. We

present here main features of two docking programs of a new generation and then their use as

a tool for the employment of quantum–chemical methods for docking.

2.6. Generalized Docking Programs

2.6.1. FLM

FLM – massive parallel low energy minima search [48, 60, 92]. The MPI–based FLM dock-

ing program performs multi–processors local optimizations of the energy of the protein–ligand

complex from random initial ligand positions and conformations. As a result the spectrum of

all or almost all low energy minima is found. Among these minima the global energy minimum
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should present and in respect with the docking paradigm the best ligand pose should correspond

to this global minimum. The term “generalized” is used for this program because the result of

its performance is not only the global energy minimum but the whole spectrum of low energy

minima. Obviously, the good accuracy of ligand positioning is an indispensable prerequisite of

high accuracy of the protein–ligand binding energy calculation. FLM works in the frame of the

ab initio MMFF94 force field [32] without simplifications and a preliminary calculated grid of

protein–ligand interaction potentials and without the use of fitting parameters. There are two

versions of this docking program: faster FLM -0.05 where energy is calculated without taking

into account the interaction of protein–ligand complex with water solvent, and slower FLM -

0.10 where the PCM implicit solvent model is implemented. The initial ligand positions and

conformations in the docking space are generated by random translations and rotations of the

ligand as a rigid body and by internal rotations (torsions) of molecular groups around ordinary

single bonds which are not included in the cyclic structures, bond lengths and values of valence

angles are kept fixed. The local energy optimization is performed by the well–known gradient

based L-BFGS method. The optimization is made with variation of Cartesian coordinates of

all ligand atoms keeping all protein atoms fixed. The docking space is defined by a sphere of

a given radius and the location restricting the position of the geometrical center of the ligand.

The number of low energy minima kept in the docking procedure is defined by the input pa-

rameter which can be any integer number. The scalability of the FLM performance with the

growth of the number of CPU cores is very good up to several thousand cores because each

local optimization is performed on a single core. One of peculiarities of the FLM program is

the time unlimited performance when the job time and the number of cores are restricted only

by a supercomputer work organization. The goal of the FLM performance is not only to find

the global energy minimum with high reliability but also to find a given number of low energy

minima without skipping any minimum. Exercises with a test set of protein–ligand complexes

where FLM was used for docking native ligands into the proteins with which these ligands were

crystallized showed that as a rule the global energy minimum was found already after several

dozen of thousands of local optimizations, but for the detection of several thousand low energy

minima it was needed to perform several hundred thousand, sometimes (for ligands containing

about 15− 20 torsions) more than a million local energy optimizations and in tote ∼ 109 energy

calculations of the protein–ligand complex were needed for generalized docking of one ligand. It

was demonstrated that FLM -0.05 could find the global energy minimum near the crystallized

native ligand position only for a small portion of test complexes. However FLM -0.10, where

the implicit solvent model was implemented, could find the global energy minimum near the

crystallized native ligand pose for more protein–ligand complexes than FLM -0.05 could do. So,

the use of implicit solvent models together with force fields is obviously better for good dock-

ing positioning. FLM can be exploited also for finding the low energy minima spectrum of the

unbound ligand. This operation is needed for the determination of the global energy minimum

of the unbound ligand defining the ligand stress energy which is an important term in the ex-

pression for the protein–ligand binding energy. It turned out that FLM could be used for the

comparison of different force fields in the docking procedure and for the investigations of effec-

tiveness of different docking algorithms. Special energy minima indexes have been introduced

which are convenient for the description of the low energy minima spectrum of protein–ligand

complexes [48, 60, 61, 92–94]. In particular, the index of the minimum Near Native (INN) is

useful for the indication of the docking accuracy. Its meaning is as follows. All low energy minima
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found by a generalized docking program can be ranked by their energy in the ascending order.

After this ranking every minimum gets its own integer index which is equal to its number in this

ranked list of minima. The lowest energy minimum obtains the index equal to 1. INN indicates

the index of the minimum corresponding to the ligand pose differing from the crystallized native

ligand position with RMSD (the root mean–square deviation over all ligand atoms) less than

2 Å. If the docking program finds several minima close to the crystallized native ligand position,

INN will be equal to the index of the minimum with the lowest energy (the lowest index from

all possible ones). When INN equals to 1, the docking paradigm is satisfied: the found global

minimum of the energy of the protein–ligand complex is near the crystallized native ligand

pose. FLM is a very resource–intensive docking program and this is its main drawback: it needs

about 10000 − 20000 CPU ∗ hours for generalized docking of one ligand depending on its size

and flexibility.

2.6.2. SOL–P

SOL–P uses the tensor train global optimization algorithm [61, 93, 94]. SOL–P is also the

generalized docking program. It performs the search for the global energy minimum, as well

as for other low energy minima of the protein–ligand complex in the frame of the MMFF94

force field [32] without any simplifications and without using fitting parameters; it does not use

neither the preliminary calculated grid of potentials of ligand probe atom interactions with the

target protein, nor premeditated points of ligand positioning in the active site of the protein.

The main peculiarity of this program is the novel tensor train (TT) docking algorithm. This

algorithm is more effective than the widely used popular genetic algorithm [109]. SOL–P docks

flexible ligands into the rigid protein (the early versions of SOL–P have been designated as SOL–

T [61]), as well as into the protein with moveable atoms. In the latter case the space for the

global energy minimum search is described by the translations and rotations of the ligand as a

rigid body, internal torsions of the ligand and by Cartesian coordinates of selected protein atoms.

In the case of docking with moveable protein atoms the INON index (Index Near Optimized

Native) has been introduced instead of INN [93, 94]. The definition of INON is almost the same

as one of INN but the ligand pose corresponding to an energy minimum is compared by RMSD

with the optimized native ligand pose obtained by the local energy optimization from the initial

crystallized native ligand position. SOL–P for a rigid protein is much faster than FLM: SOL–P

needs only about 5 − 100 CPU ∗ hours for docking a flexible ligand depending on its size and

the number of torsions, but FLM carries out a more thorough search of low energy minima. The

effectiveness of finding of the global energy minimum by FLM and SOL–P is almost the same.

TT docking algorithm is based on the recently developed methods of the tensor analysis and in

particular on the TT global optimization algorithm. Tensors, multi–dimensional arrays, appear

in the docking problem as follows. The energy of the protein–ligand complex in the frame of the

MMFF94 force field is a continuous function depending on the variables describing all degrees

of freedom (d) of the molecular system. If the discretization of each of these variables is carried

out by a set of discretization points (n), e.g. equidistant points, the continuous energy function

is transformed into d–dimensional tensor with nd elements. If the discretization is sufficiently

fine, the solution of the continuous global optimization problem coincides with the solution of

the discrete global optimization problem. The TT global optimization algorithm determines the

largest in magnitude element of a tensor. Docking is the global minimization problem but it can

be easily converted into the global maximization problem applied for example to the functional:

A.V. Sulimov, D.C. Kutov, Vl.B. Sulimov

2019, Vol. 6, No. 3 39



f(x,E∗) = exp100arccot(E(x)−E∗) (2)

where E(x) is the dimensionless MMFF94 energy for the given conformation x of the protein–

ligand complex, E∗ is the global minimum found on the previous iteration. The global max-

imization problem is solved on the base of TT–Cross method [65] which is used to obtain

approximation of the tensor A(i1, ..., id) in the tensor train (TT) representation:

A(i1, ..., id) ≈
r1,...,rd∑

α1=1,...,αd−1=1

G1(i1, α1)G2(α1, i2, α2)...Gd−1(αd−−2, id−1, αd−1)Gd(αd−1, id). (3)

The numbers r1, ..., rd−1 are called TT–ranks of the tensor. The 3–dimensional tensors

Gi ∈ Rri−1×ni×ri are called cores or carriages of the tensor train. Operations on tensors in the

TT format are reduced to standard matrix rules. If TT–ranks are reasonably small, then the TT

decomposition has several suitable properties allowing a fast tensor element evaluation, effective

storage and others [63, 64]. Note that TT–Cross method exploits the well–known matrix cross in-

terpolation [31] algorithm. There are three main parameters defining the TT–docking algorithm

performance, and their optimal values are determined during the SOL–P validation [93, 94]: the

number of discretization points for each variable corresponding to each degree of freedom, the

optimal value is 216, the maximal TT–rank, the optimal rank is 4, and the number of iterations

of the TT–algorithm, the optimal number is 15. SOL–P is written on C++ with usage of BLAS

and LAPACK libraries and it uses the parallel MPI. Details of the TT–docking algorithm and

the organization of performance of the SOL–P program are presented in [61, 93, 94].

SOL–P is successfully used for the docking flexible ligands into the proteins with moveable

atoms. The results of such docking are described in [93, 94] where results of successful docking

with 157 degrees of freedom are presented. The main distinction of this realization from the

widely used ensemble docking is that the global energy minimum search is performed with

variations of all variables describing ligand and protein degrees of freedom simultaneously and

equally. Actually there are no special restrictions on the number of mobile protein atoms, but

these atoms can move only in respective cubes with edges of about 1 Å and centered at the

position of these atoms in the structure taken from PDB. Such investigations have shown that

movements of some protein atoms in the docking process improves positioning accuracy of

docking [93, 94]. The effectiveness of the TT–docking algorithm makes it possible to dock by

SOL–P flexible ligands, oligopeptides, with a large number of torsions (more than 15− 20) [87].

Such flexible ligands cannot be docked usually by classical docking programs.

2.6.3. Quasi–docking

Quasi–docking is a combination of a force field and quantum chemical methods [89]. The

validation of the FLM generalized docking program and investigations with it the spectra of

low energy minima of different test sets of protein–ligand complexes lead to the idea of the

quasi–docking procedure. Quasi–docking has been used for the comparison of quality of docking

with different force fields and quantum–chemical methods [88, 89]. Quasi–docking consists of

two steps. At the first step sufficiently wide range of low energy minima of a protein–ligand

complex is found with the help of the FLM docking program, the energy is being computed

in the frame of the MMFF94 force field [32]. At the second step energies of all these minima
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are recalculated with other force fields or quantum–chemical methods. It has been shown that

when the protein–ligand energy is calculated with the CHARMM force field and the respec-

tive GBSW implicit solvent model ligand positioning accuracy is better than in the case of the

energy calculated with the MMFF94 force field and with the respective PCM implicit solvent

model [89]. On the other hand the docking accuracy with CHARMM is worse than with either

PM6–D3H4X [101, 102], or PM7 [83] quantum–chemical methods used for the energy calcu-

lations with the COSMO implicit solvent model [43]. These quantum–chemical methods were

developed rather recently comparing with older AM1 or PM3 methods, which had been widely

used during latest 30 years. PM6–D3H4X and PM7 methods overcome the main limitations

of older semiempirical methods describing well dispersion interactions and hydrogen bonds at

the level of DFT ab initio methods [34]. These quantum–chemical semiempirical methods and

the COSMO solvent model are implemented in the MOPAC (http://OpenMOPAC.net) pack-

age [84] where the module MOZYME gives an opportunity to calculate sufficiently quickly the

whole protein–ligand complexes containing thousands of atoms. So, quasi–docking actually gives

an opportunity to perform docking with quantum–chemical methods which demonstrate the best

docking accuracy. A sufficiently wide low energy minima spectrum should be found at the first

step of quasi–docking and its optimal width, when the energy is calculated with MMFF94 with-

out solvent, is determined to perform minimal quantity of quantum–chemical recalculations [48].

Certainly, each step of the quasi–docking procedure essentially exploits supercomputing.

Conclusion

Materials presented in this review show that supercomputers are used for docking more and

more widely. To some extent this is amazing because the vast majority of docking programs are

still focused on working on laptops and workstations. However, the needs to increase effectiveness

of molecular modeling application to drug design, to perform docking more accurately and to

screen millions of virtual and on–the–shelf compounds force to attract supercomputer resources

for docking. The necessity to use large computing resources for docking appeared more than 10

years ago when grid technologies were used for virtual screening of large libraries of compounds

using docking. Currently two directions of supercomputer docking are formed. First, the adapta-

tion of existing docking programs to supercomputers to perform effectively docking of hundreds

of thousands or millions of ligands. Two problems should be solved on this road: to reach high

effectiveness of multi–core parallel calculations of a great amount of ligands, and to perform a

fast and effective analysis of the very large arrays of results yielded by docking. Second direction

of the supercomputer docking focuses on a more accurate docking of a single ligand. Along this

road novel docking programs are created which are free from simplifications and approximations

inherent in classical docking programs, and the novel programs can be used to obtain with max-

imal accuracy the spectrum of low energy minima of the protein–ligand system, which forms

its configuration space and actually defines the free energy of the system. This road is much

more tortuous and hard because one should overcome both computing and physical–chemical

problems. The outlines of quantum–chemical docking is appearing ahead along this road. How-

ever, efforts to achieve this goal will be justified by attaining much higher efficiency in the use

of docking programs for the drug development.
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