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New applications that can exploit emerging exascale computing resources efficiently, while

providing meaningful scientific results, are eagerly anticipated. Multi-scale models, especially

multi-scale applications, will assuredly run at the exascale. We have established that a class of

multi-scale applications implementing the heterogeneous multi-scale model follows, a heteroge-

neous multi-scale computing (HMC) pattern, which typically features a macroscopic model syn-

chronising numerous independent microscopic model simulations. Consequently, communication

between microscopic simulations is limited. Furthermore, a surrogate model can often be intro-

duced between macro-scale and micro-scale models to interpolate required data from previously

computed micro-scale simulations, thereby substantially reducing the number of micro-scale sim-

ulations. Nonetheless, HMC applications, though versatile, remain constrained by load balancing

issues. We discuss two main issues: the a priori unknown and variable execution time of mi-

croscopic simulations, and the dynamic number of micro-scale simulations required. We tackle

execution time variability using a pilot job mechanism to handle internal queuing and multiple

sub-model execution on large-scale supercomputers, together with a data-informed execution time

prediction model. To dynamically select the number of micro-scale simulations, the HMC pattern

automatically detects and identifies three surrogate model phases that help control the available

and used core amount. After relevant phase detection and micro-scale simulation scheduling, any

idle cores can be used for surrogate model update or for processor release back to the system. We

demonstrate HMC performance by testing it on two representative multi-scale applications. We

conclude that, considering the subtle interplay between the macroscale model, surrogate models

and micro-scale simulations, HMC provides a promising path towards exascale for many multi-

scale applications.

Keywords: multi-scale modelling, surrogate model, computational science, heterogeneous multi-

scale computing, high performance computing, exascale.

Introduction

Science has the ability to describe phenomena and often to predict their occurrence and

outcome in an accurate and rapid manner. These phenomena naturally, and computation-

ally, are multi-scale both in time and space [4, 13, 15, 16, 18, 28, 32]. Multi-scale comput-

ing [3, 5, 10, 11, 14, 17–19] depends on scale separation and invokes set of single-scale models,

each representing a process in time and space, coupled together to describe a phenomenon

ranging over temporal and spatial scales. From a computational point of view, the single-scale

models, which by themselves could be massively parallel simulations, could run independently

of each other, which provide new opportunities in terms of scalability and performance tuning

for the emerging exascale [5, 17]. By investigating a broad range of multi-scale applications

from many different domains, we have identified a set of generic patterns that are common to

these applications. These patterns can be seen as a “high-level call sequences that exploit the

functional decomposition of multi-scale models in terms of single scale models” [5].We believe
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there are three generic multi-scale computing patterns to be most relevant for high performance

multi-scale computing, namely extreme scaling (ES), replica computing (RC) and heterogeneous

multi-scale computing (HMC) [5].

The extreme scaling pattern is where one sub-model (the primary model) dominates the

computation, while the others are auxiliary models. The main target is to reduce communica-

tion between them and prevent serialisation due to auxiliary models. The replica computing

pattern represents a set of multi-scale applications where a large number of single-scale simula-

tions are combined to obtain statically robust outcomes. Distributing these replicas on different

supercomputers could lead to an increase in overall performance. For further discussions on these

two patterns we refer to [3–5, 25].

The heterogeneous multi-scale computing pattern is based on, and inspired by, the hetero-

geneous multi-scale method [33]. In a heterogeneous multi-scale method, a complex phenomenon

is modelled by employing a numerical solver for the macro-scale equations and obtaining missing

properties (e.g., constitutive equations) from suitable micro-scale simulations. Hence, the macro-

scale model is coupled with a large and typically dynamic number of micro-scale models [4, 30]

(Fig. 1).

Figure 1. Computational structure of hierarchical multi-scale applications

The HMC pattern implements a family of multi-scale models which, using the multi-scale

modelling and simulation framework (MMSF) terminology (see [5, 9, 10]), are single domain with

multiple and dynamic instantiations of the micro-scale dynamics [9]. The heterogeneous multi-

scale method [1, 33] represents the most obvious multi-scale model that fits the HMC pattern.

Other examples could include uncertainty quantification on extreme scaling applications using

the so-called semi-intrusive algorithms [26].

The primary potential and advantage of heterogeneous multi-scale modelling is capturing

the dynamics at the macro-scale level by explicitly considering some microscopic details of

the problem. Thus, HMM is a modelling approach used to numerically solve single-domain

multi-scale problems by coupling multiple micro-scale submodels together with a macro-scale

model, and each of the micro-scale simulations solves a macroscopic property concurrently. The

overall macro-scale behaviour then emerges when the separate submodels are combined. Micro-

scale models thus are employed to resolve each unknown component of the problem separately

and return the result to the macro-scale model. Frameworks schema taking into account the

computational aspects of HMM, certainly in relation to HPC, are rare [5, 20]. For this reason

we propose heterogeneous multi-scale computing as a way to efficiently execute HMM models

on state of the art HPC infrastructure.
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For the purpose of illustration, consider the case of a flowing suspension where the macro-

scale constitutive equations may not be known [23]. A lattice Boltzmann model of local fluid

velocity u and an advection–diffusion model of local particle density H, representing the macro-

scale models, are coupled with a set of fully resolved 3-D lattice Boltzmann suspension model(s).

These micro-scale models compute the local viscosity ν and the diffusivity tensor D from a

complete run on each, or many lattice point(s) in the macro-scale model to be used in the next

time step [23]. This example will be used as proof of concept and is shown in Fig. 2.

Figure 2. Lattice boltzmann fluid model of local velocity u and advection–diffusion model of

local particle density H, representing the macro-scale model, are coupled with a set of fully

resolved 3-D lattice boltzmann suspension model(s). These micro-scale models compute the

local viscosity ν and the diffusivity tensor D

Load Balancing in HMC

Micro-scale models can be and usually are computationally intensive, such as in the 3-

D example considered above. The number of micro-scale models also depends on the spatial

properties of the macro-scale model [23]. From a computational point of view, the potentially

very large number of micro-scale simulations, the dynamic nature of the amount of required

micro-scale models, and their execution time, can become a bottleneck in production runs [5].

This leads to challenging large scale dynamic simulations that are far from trivial to efficiently

execute in HPC environments.

To deal with the issue of variable number of executing micro-scale models and their variable

execution time in a high performance computing environment, we rely on the pilot job mechanism

in combination with a layer of dedicated optimisation and scheduling functionality. The pilot

job, for example RADICAL-Pilot [29], is a normal job submitted to supercomputers to reserve

resources and use them as an integrated whole. The QCG pilot job manager system [21] has a

similar mechanism which allows management of the resources on the application level. A pilot

job is akin to a traditional job array, but it allows the scheduling and execution of small and

dynamic jobs with different resource requirements.

A possible approach to reduce the number of micro-scale simulations is to utilise a surrogate

model as an intermediate layer between the scales to prevent re-computing micro-scale simula-
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tions for parameters that are already known, and to use the already computed quantities at the

micro-scale, stored in a database, to build a surrogate model. The database and surrogate model,

in conjunction with an HMC manager, restores previously computed data, interpolates them

where necessary using the surrogate model, and provides input to the macro-scale model(s).

Depending on the state of the surrogate model and the history of the data required, this mech-

anism can reduce the number of micro-scale simulations significantly, potentially by orders of

magnitude.

Generally, this approach is practical and has already been demonstrated in multiple

fields [22, 31]. The exchange of data should not be a bottleneck in this approach, because the

exchange between scales usually involves a few floating-point numbers that represent specific

properties. However, the number of micro-scale models should be mapped efficiently to available

hardware resources to avoid potential load-balancing required at runtime issues [5].

The role of the HMC manager is to build the surrogate model and evaluate it when needed.

In this process, at every time-step the macro-scale model sends a request to the HMC manager

for required quantities. The manager then consults the surrogate model for the required infor-

mation. For this purpose, a user-defined script is implemented to decide whether the cached or

interpolated data is sufficient. If not, the manager will start new micro-scale models to obtain

more accurate results. To prevent the manager itself from becoming the bottleneck, so as we will

assume asynchronous I/O and separate computing resources for the HMC manager. A schematic

of this process is shown in Fig. 3.

Figure 3. Main workflow of the heterogeneous multi-scale computing and different components

(macro, micro, surrogate and HMC manager). The main components are highlighted

Although the main benefit of the dynamic nature of the surrogate model is to decrease

the computational cost, it still may cause load imbalance because the number of single-scale

models, at each macro-scale iteration, is dynamic [22]. The purpose of the HMC pattern is to

mitigate these issues and provide a level of control over the execution that aims to minimise

load imbalance and maximise resource utilisation over the complete HMC run.

Our approach is to use the resources dynamically supported by the architecture, with the

assistance of tailored scheduling which is controlled by the pattern. In the next section, we will

focus on load balancing in micro-scale models in HMC.
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1. Methods

A typical iteration of an HMC application consists of simulating one time-step of a macro-

model, followed by a large number of simulations of micro-models. The outputs of the micro-

model simulations are synchronised before moving to the next iteration of the macro-model.

While the single macro-model simulation usually is straightforward to perform, efficient use of

resources during simulation of the micro-model requires potentially complex scheduling. A first

issue arises from the submission of the micro-model simulations, as their large number makes

it impractical to submit them individually to the supercomputer job manager. The relatively

small size of each of these jobs would generally grant them a low execution priority in turn, the

variable queuing time may cause significant bottlenecks when synchronising the micro-model

simulations results.

A simple solution is to batch the micro-model simulations and perform them in a single,

large resource allocation. This large allocation can either be requested at the beginning of the

multi-scale simulation, or at every iteration of the workflow. The former avoids repeated queuing

periods of time, while the later releases the large allocation during the execution of the macro-

model simulation. Independently of the chosen method, the micro-model simulations have to be

internally scheduled within the requested resource allocation. The Internal scheduling algorithm,

set by the user in QCG, is First Come First Serve, while the large allocation can be subdivided

into a separated number of sub-allocations of fixed size. An identical number of cores is allocated

to each sub-allocation. Naively, before starting the first micro-model simulation, each of these

are arbitrarily assigned to a sub-allocation, such that each will perform a similar number of

simulations (see Fig. 4a and b).

However, this simplistic sub-allocation assignment method can rapidly become inefficient.

Even though each sub-allocation is similar in terms of resource size and number of simulations to

perform, nothing guarantees that each of the simulations have comparable execution time. Due

to the lack of a priori knowledge about this execution time, arbitrary assignment can cause some

sub-allocations to complete their simulations far quicker than others by, for example performing

only short ones. Consequently, a significant load imbalance can result in leaving sub-allocations

idle for long periods of time (see Fig. 4c).

1.1. Optimisation of Resources

We propose to address the load balancing issue induced by arbitrary a priori resource

assignment and variable execution time of the micro-model simulations using two mechanisms:

(i) pilot job manager (PJM) internal scheduler, and (ii) optimisation of sub-allocation size.

The PJM mechanism essentially consists of an internal job scheduler for the large allocation

provisioned for the whole set of micro-model simulations of a given iteration. The execution

order of the jobs is specified in a First In First Out (FIFO) manner. The main advantage of

the PJM is that all the jobs are gathered in a single queue, allowing execution on any subset of

cores from the large allocation, as soon as the required resource size is available. Moreover, the

size of this sub-allocation can be easily specified independently for each job, which helps when

size adjustment is needed to reduce execution time disparities.

In order to reduce the variability of the micro-model simulations execution time, the sub-

allocation size can be adjusted individually. Acknowledging that micro-model simulations ought

to scale strongly up to certain number of cores, this can be achieved without any loss of effi-
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(a) Näıve, equitable partition of the total alloca-

tion with arbitrary and a priori assignment of the

simulations

(b) Pilot job manager based scheduling, with sin-

gle queuing mechanism allowing on-the-fly assign-

ment of free resources

(c) Consequences of the variable execution time of the micro-model simulations on idle time of resources.

In light the portion of actual computation, and in dark, idle time. Few sub-allocations (e.g., Exclamation

mark) can keep all other sub-allocation idle for a significant amount of time causing load imbalance

Figure 4. Internal scheduling of micro-model simulations inside a large allocation

ciency, as long as the sub-allocation size remains in the strong scaling domain. The upper limit

of the strong scaling domain can easily be obtained from benchmarks scaling (see Fig. 8b).

Subsequently, the simulations allocation size can be re-scaled proportionally to their estimated

execution time. The longest simulations are performed with the number of cores associated with

upper boundary of the strong scaling domain, while the shortest are performed with the lower

boundary, that is one core. However, in less variable micro-model simulations execution time, in

job farming it is always better to run with the lower bound as shown next.

Predicting execution time can be done in various ways which either rely on benchmarking

data or a reference model function of input parameters. The former can be queried directly to

obtain an estimation of an execution time (see Fig. 8a).

1.2. Incorporating Surrogate Model

Now we want to consolidate the multi-scale model with a surrogate model, let us assume

that we will utilise a pilot job running on Ptotal processors for a time T , where Ptotal and T are

decided by the user at launch time. Let the macro-scale model (M) execute on PM processors, the

surrogate model (S ) execute on PS processors, the HMC manager (HMC) on PH processor and

η micro-scale models execute on Pµ processors. For the macro-scale model, the HMC manager

and the surrogate model, the processor allocation is static while for the micro-scale models it is

dynamic.

Ultimately, the number of micro-scale models η to be executed is dynamic and changes at

every macro-scale time step, depending on how effective the surrogate model is in predicting
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the missing quantities. Thus, η(t) is the number of micro-scale models at time t. Its range is

(0 ≤ η ≤ DoF ), where DoF is the total number of degrees of freedom of the macro-scale model

that are coupled to the micro-scale simulations. This could, for example, be the number of lattice

points in a flow simulation where, in each lattice point, the viscosity is unknown and needs to

be obtained from a micro-scale simulation.

The number of successful calls to the surrogate model per time step, which replaces the need

to generate micro-scale jobs, is (ηD(t)). This will reduce the number of micro-scale models to

η(t) = DoF − ηD(t). (1)

We define g(t) as the performance of the surrogate model,

g(t) =
ηD(t)

DoF
, (2)

and then write the actual number of micro-scale models that need to be executed at a macro-scale

time step as

η(t) = DoF (1− g(t)). (3)

To complete the process, the number of processors allocated to run one micro-scale model i,

Pµi, is determined at runtime by the HMC manager. These numbers are stored in an array (Pµ[])

to represent the number of processors to run the η(t) micro-scale model(s) for one macro-scale

iteration t. Also, the computing resources for the HMC manager PH are determined separately.

At launch time, the HMC pattern software obtains the number of processors for each main

component (i.e. PM , PS , Pµ and PH) and the macro-model degrees of freedom (DoF ) from the

user. Also, the initial performance measurements of the micro-scale model are benchmarked to

retrieve the minimum Pmin and maximum Pmax number of processors to run one micro-scale

model. Pmin is determined by memory requirements and Pmax by strong scaling behaviour where

Pmax denotes the number of processors required, where the execution time is minimised.

Depending on the budget of the user, the requested time to completion and the expected

number of micro-scale models, the user would estimate the resources to be used and the time

required for execution. Next, the variables used during runtime, namely the number of processors

per micro-scale model Pµi, must be determined as discussed previously.

Generally, the total number of processors for micro-scale models Pµ can be used either in

stateful or stateless mode. If the micro-scale models are stateful, then the micro-scale models

reside in memory and the HMC manager feeds the micro-scale models with appropriate input

and initial conditions. Although this method is easy to implement, it assumes that all micro-

scale models will be the same, requiring the same time and computational power, which is a

main source of a load-imbalance situation.

In the stateless mode, the number of processors per micro-scale model Pµi is totally dynamic.

In this case, the pattern software decides how to utilise Pµ for each macro-scale iteration. The

main advantage of this method is that when the computation of the micro-scale models is

complete, their nodes/cores can be used for pre-calculating some of the database properties of

the surrogate model, or simply release them to the system.

The distribution of the number of nodes/cores per micro-scale model depends on the num-

ber of micro-scale models requested and the number of available processors for these micro-scale

models. In the following subsections, we will discuss a mathematical model for the dynamic num-
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ber of micro-scale models, and we will provide an example of the performance of the surrogate

model.

1.2.1. Execution time model

In this section, we discuss optimal manners in which to run the micro-scale jobs. First, the

computing time for one and for multiple micro-scale models is analysed, then the performance

of the surrogate model g(t) per time step during the simulation is evaluated.

The computing time to run one micro-scale model using Pµi processors can be calculated

utilising the concept of fractional overhead [5, 7], with

Tµi(Pµi) =
Tµi(1)

Pµi
+ To(Pµi) =

Tµi(1)

Pµi
(1 + fo(Pµi)), (4)

where Tµi(1) is the time to run one micro-scale model using a single processor and To(Pµi) is the

overhead time for running one micro-scale model using Pµi processors. The fractional overhead

fo for running one micro-scale model using Pµi processors can be expressed as

fo(Pµi) =





0, if Pµi = 1

PµiTo(Pµi)/T
µi(1) > 0, otherwise.

. (5)

The total time T to run each micro-scale model on the same number of Pµi processors (so,

independent of i) using a total of Pµ processors for all micro-scale models will be

T =
η(t)⌈
Pµ/Pµi

⌉
(
Tµi(1)

Pµi

(
1 + fo(Pµi)

))
∼ η(t)

Pµ

(
Tµi(1)(1 + fo(Pµi))

)
, (6)

where η(t) is the number of micro-scale models in time step t. The target is to minimise T , then

Pµi = 1; fo(1) = 0, (7)

T =
η(t)Tµi(1)

Pµ
. (8)

Otherwise,

T =
η(t)Tµi(1)

Pµ
(1 + fo(Pµi)), (9)

which means that the fewer processors we use per micro-scale model, the lower will be the

overhead. One should note the difference with Section 1.1, where the surrogate model is not

used. In the second step we assume that Tmui(1) is equal for all i, so very little or no variability

in the runtime for the microscale simulations comparing to the surrogate model.

1.2.2. Surrogate model performance

The number of micro-scale models η(t) changes with every macro-scale model iteration

and is highly dependent on the state of the surrogate model. For this, we need to analyse the

performance of the surrogate model per time step (g(t)). The value of g can vary for cases where

the user is building the surrogate from scratch (g −→ 0), to cases where the surrogate model

replaces the micro-scale models efficiently (g −→ 1), or for in-between situations. To deal with
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the distribution of the number of nodes/cores in these cases, we defined three different phases,

and the corresponding processor distribution mechanism is shown in Alg. 1.

The important elements in Alg. 1 are the number of processors reserved for all micro-scale

models Pµ, and η(t), the number of micro-scale models in time step t. If Pµ < Pminη(t), then

the most appropriate action to take is to perform farming by running each micro-scale model

with a minimal number of processors Pmin. On the other hand, if Pµ < Pmaxη(t), then running

with Pmax is the most suitable choice. Otherwise, for Pminη(t) < Pµ < Pmaxη(t), all micro-scale

models must be run on
⌈
Pµ/η(t)

⌉
, limiting it to no more than Pmax, which is the maximum

number of processes that the model can benefit from before performance decreases. Also, if the

performance values of running the micro-scale models using different parameters are available or

can be estimated, the number of processors per micro-scale model can be changed accordingly

in the second phase. We will apply this concept to two different cases for the surrogate model,

starting from scratch and from a developed surrogate model.

Algorithm 1 HMC phases

1: procedure HMC(g(t), DoF, Pmin, Pmax, Pµ)

2: η(t) = DoF (1− g(t))

3: if η(t)Pmin > Pµ then . Phase 1

4: run(η(t), Pmin)

5: else if η(t)Pmin < Pµ < η(t)Pmax then . Phase 2

6: run(η(t),
⌈
Pµ/η(t)

⌉
)

7: else . Phase 3

8: run(η(t), Pmax)

Case (a): Surrogate model from scratch

If the user starts building the surrogate from scratch, i.e. for g −→ 0, then it is meaningless

to run DoF micro-scale models to fill the database at the beginning. This will be inefficient,

since the degree of freedom can easily reach 106 or more. What can be done is cluster input

parameters into an input subsample. In this case, the initial batch of micro-scale models (ηinit),

from which a surrogate model is built, is first executed, then run the next batch (either look it

up in the database or run the micro-scale model), and so on.

Figure 5 shows the performance of a surrogate model (top graphs), expressed by g(t), and

the corresponding number of micro-scale jobs (lower graphs) for two different performance levels

of the surrogate model. Both examples had a (DoF = 48818). The colours show the three phases,

as introduced above. Phase one, where the farming of jobs is done using Pmin processors per

micro-scale model, is represented in green. Phase two is shown in blue, and the third and final

phase is shown in red. The dashed lines in the figures are the macro-scale model iterations.

The first example, Fig. 5a, shows a surrogate model with good performance (model = scratch,

good performance), while the second example; Fig. 5b, demonstrates poor performance (model =

scratch, poor performance). These performance figures are based on the results from a simulation

in which this surrogate model was actually implemented [22] with modification at the first few

macro-scale iterations in order to mimic the case of a new surrogate model.

Towards Heterogeneous Multi-scale Computing on Large Scale Parallel Supercomputers

28 Supercomputing Frontiers and Innovations



0.0

0.2

0.4

0.6

0.8

1.0

P
e

rf
o

rm
a

n
c
e

0 1 2 3 4 5 6 7

Iterat ion

0

1000

2000

3000

4000

5000

M
ic

ro
-s

c
a

le
 j

o
b

s

(a)

0 1 2 3 4 5 6 7

Iterat ion

1000

2000

3000

4000

5000

M
ic

ro
-s

c
a

le
 j

o
b

s

0.2

0.4

0.6

0.8

1.0

P
e

rf
o

rm
a

n
c
e

(b)

Figure 5. Behaviour of a surrogate model generated from scratch for two different performance

levels. A good performance level is on the left (model = scratch, good performance), a poor

performance level is on the right (model = scratch, poor performance). The upper two panels

show the performance values of the surrogate model and lower two panels show the corresponding

numbers of micro-scale jobs. In this example, Pmin = 1, Pmax = 16 and Pµ = 206. The colours

refer to the phases, where green is the first phase, blue the second, and red the third. The dashed

lines represent the macro-scale model iterations

Case (b): Developed surrogate model

A HMM simulation can also be executed using a previously constructed surrogate model.

Figure 6 (top) shows the performance of a well-established surrogate model and the correspond-

ing micro-scale models (Fig. 6 (lower)) for two different performance levels of the surrogate

model. As for case (a), both simulations had a DoF = 48818. The performance figures are based

on the results from a simulation in which this surrogate model was actually implemented [22].

As shown in Fig. 5 and 6, the first phase of the new surrogate model, case (a), requires more

jobs at the beginning to build the surrogate model. This phase also takes more macro-scale

iterations to complete. Note that the number of micro-scale jobs per iteration is calculated as

η(t) = DoF (1 − g(t)). However, in the first phase we do not run the total number of degree of

freedom (48818) jobs, but we run batches from which we can then train the surrogate model.

In the second phase, the number of micro-scale jobs is less than the number of micro-scale jobs

in the first phase. Knowing that it is not beneficial to run a micro-scale job utilising more than

Pmax processors, and the time to run a micro-scale job varies with the number of processors and

the input parameters, we might have a number of idle cores/nodes. For the two study cases, we

can use the free cores/nodes in the second and third phases to further explore the parameter

space of the micro-scale model for better performance of the surrogate model, or even change

the number of processors per micro-scale model based on different input parameters for each

micro-scale model. In the third phase, it is preferable to release a number of unused processors

back to the system to save on the cycle budget. Generally, switching between phases will be

totally dynamic and the runtime part of the HMC pattern software should handle this process,

as will be illustrated in the next sections.
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Figure 6. Behaviour of a well-developed surrogate model for two different performance levels.

The good performance level is shown on the left (model = developed, good performance), the

poor performance level on the right (model = developed, poor performance). Upper panels show

the performance values, and lower panels show the corresponding numbers of micro-scale jobs. In

this example, Pmin = 1, Pmax = 16 and Pµ = 206. The colours refer to the phases, where green

is the first phase, blue the second, and red the third. The dashed lines represent the macro-scale

model iterations

2. Results

In this section, we will discuss our results for addressing the issues of load balancing both

due to variable execution time and to a dynamic number of micro-model using two represen-

tative applications, which are a nano-materials system and a red blood cell suspension system,

respectively.

2.1. Nano-materials Application

Ab initio physical models are unfeasible beyond the smallest scales (i.e. the nano-scale),

although density functional theory and molecular dynamics are the models of choice of material

scientists, these models overlook the geometrical and structural complexity of the engineering

scale, which induces a heterogeneous conglomeration of local mechanical states. Correctly cap-

turing these is essential to observe the emergence of macroscopic materials properties. Current

attempts to explore the properties of a system of atoms when bridging from the atomistic to

the continuum scale most often involve ad hoc assumptions [12], in the form of constitutive

modeling, most certainly missing out substantial peculiarities of the newly formulated mate-

rial. Our HMC application [30] computes the dynamic equilibrium of mechanical forces in a

continuum structure using the finite element method (FEM). In a classical FEM approach the

local constitutive relation between stresses and strain comprises a series of phenomenological

mathematical equations, but in the present case it is replaced by a molecular dynamics (MD)

simulation (see Fig. 7b). An MD simulation, with nanoscale detail of the material structure, is
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(a) Computational workflow coupling the FEM and MD models

(b) Zoom across the multiple scales of the workflow, from which the con-

tinuum description reproduces realistic boundary conditions of a stan-

dard compact-tension test for fracture toughness estimation, embedding

at atomistic description of the polymer, capturing the chemical specificity

of the crosslinked chain network

Figure 7. Prediction of mechanical properties using an HMM workflow

performed whenever the stress resulting from an applied strain history is required. In a nutshell,

the application consists of a macroscopic FEM model which synchronises the simulation of a

large number of microscopic MD models iteratively as time advances (see Fig. 7a).

In more detail, the macroscopic model feeds a microscopic model with a given strain tensor;

the microscopic model evolves following Newton’s equation of motion to reach the given strain.
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The resulting evolution is dependent on the strain rate applied on the microscopic system. In

turn, the execution time of the microscopic simulation is highly correlated with the amplitude

of the applied strain (see Fig. 8a). Any heterogeneous macroscopic field at a certain iteration

in the macroscopic model will inevitably result in varying execution time of the microscopic

model simulations. However, as mentioned in Section 1.1, this variability can be toned down

by exploiting the known strong scaling curves of the microscopic model (see Fig. 8b). Note

that since the microscopic system evolves out of equilibrium with the applied strain, each finite

element cell is necessarily more associated with its own atomistic structure. This makes the use

of surrogate modelling difficult with the nano-materials application, but this will be addressed

with the red blood cell suspension application in Section 2.2.

(a) Linear dependence of the strain amplitude on

the execution time
(b) Strong scaling of the simulation of the model of

the 40000 atoms structure strained at 0.1% of epoxy

resin

Figure 8. Benchmarking of the molecular dynamics model simulation

The microscopic MD systems describe epoxy resin and graphene nanocomposites, involving

approximately 40000 atoms. Each microscale system represents a 10 nm wide cubic box. The

microscopic simulations are performed with a constant time step of 2 fs and a constant strain

rate of 10−4 s−1. The MD simulations are performed using LAMMPS [27] and the ReaxFF force

field [2] that captures on-the-fly bonding and debonding of atoms. The macroscopic system

models the structure of a compact-tension test following ASTM International Standards [6]

(ASTM/E1820). The geometry of the test is specifically designed to trigger the appearance of a

single crack in the structure. The dimensions of the compact-tension test specimen are typically

of the order of a few centimetres, while the load is applied over a few seconds (see Fig. 7b).

Assuming time scale separation, the macroscopic simulations are performed with a much larger

time step, that is 0.5 µs, as compared to the microscale simulations. Similarly, assuming space

scale separation, the FEM cells are 1 mm wide. The FEM simulations are performed using the

Deal.II library [8].

2.1.1. Results

We perform a benchmark of the nano-materials application on the five first time steps of

the simulation described in Section 2.1. Internal scheduling of the micro-scale model simulations

is executed with three different configurations: (i) a näıve, (ii) a PJM, and (iii) a PJM+opt

configuration. The first (näıve) corresponds to the configuration described in Fig. 4a, with
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arbitrary and a priori assignment of the simulations. The second (PJM) refers to the pilot

job manager based scheduling (see Fig. 4b), with single queuing mechanism allowing on-the-

fly assignment to free resources. The third (PJM+opt) is equivalent to the PJM configuration,

with the additional optimisation layer compensating for the variability of the micro-scale model

simulation execution time. This benchmark is performed for two sizes of allocation: (a) 20 nodes

and (b) 100 nodes each computing a total of 28 cores on the Eagle supercomputer4 in Poznan,

Poland. In this test case, the strong scaling limit of the micro-scale model is 4 nodes due to the

limited number of particles. In the näıve and PJM, we assume that the micro-scale simulations

are all performed on the same sub-allocation size, hence 4 nodes. From practice and the in-depth

knowledge discussed in 1.2.1, in case of large number of replicas, running on one node will reduce

the communication and would provide a better performance. In the PJM+opt configuration, the

sub-allocation is varied from 1 to 4 nodes following the predicted execution time of the micro-

scale simulation. The reason for this choice is because one replica takes the whole node, i.e. all

the 28 cores.

The total runtime for each of the three internal scheduling configurations with the two sizes

of allocation is shown in Fig. 9a, b. Independently of the resource allocation size, we observe

an important speedup, up to a 70% runtime reduction, in configurations featuring the flexible

PJM mechanism. Nonetheless, the relative speedup in presence of the PJM is reduced on larger

allocations to approximately 35%. As the allocation size grows, with a constant amount of micro-

scale simulations, internal queuing is reduced as is the predominance of load balance induced

by rigid a priori plan. Conversely, flexible internal queuing dominates when the total allocation

size becomes comparable to the micro-scale simulation allocation, respectively 20 and 4.

A more detailed analysis using the performance reports provided by the PJM, helps us

to determine why the optimisation layer actually has an effect on the total runtime with a

100 nodes application. In Fig. 9c, d, the PJM analytics indicate the evolution over the course

of the simulation of the utilisation percentage of the resources, the number of concurrent micro-

scale simulations, and the instantaneous average of cores per micro-scale simulation. In the first

iteration, we can then observe that for the simulation with the PJM+opt configuration with

100 nodes (see Fig. 9d), 62 out of 100 nodes are not used due to misleading scheduling decisions

and currently working on improving this. In turn, the first iteration is slightly longer with than

without the optimisation layer. Nonetheless, when we focus on the last three iterations the

PJM+opt configuration is actually faster than the PJM configuration by 20% due to the size

of single-scale model. These three iterations demonstrate the benefit of reducing the execution

time variability between micro-scale simulations. Clearly, this gain of performance would be

way beneficial when we run the simulation for a large number of iterations. The small peaks in

Fig. 9d (middle) represent the small and fast micro-scale models being executed by the end of

each macro-scale iteration.

The detailed analytics reported by the PJM also illustrate generally the benefits of having

a flexible internal queuing system. Consistently for both configurations shown in Fig. 9c, d, we

observe optimal usage of the total allocation up to a certain, late, point in time. This corresponds

to the point in time when the queue of simulations is finally emptied. From then onward, resource

usage slowly decreases until all simulations are completed.

4https://wiki.man.poznan.pl/hpc/index.php/Eagle
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(a) (b)

(c) (d)

Figure 9. Benchmarking of the full nano-materials with various internal scheduling methods.

Comparison between näıve (a priori scheduling assignment with multiple internal queues), PJM

(single queue internal scheduler) and pjm+opt (single queue and variable resource allocation)

configurations. The application is run for 5 iterations of the HMC workflow. (a, b) Influence

of the internal scheduling method on the total runtime of the Nano-materials application. Two

allocation sizes are tested: 20 nodes (left) and 100 nodes (right). (c, d) Detailed analytics

from the PJM for the 100 node allocations with pjm (left) and pjm+opt (right) configurations

only. That is time evolution of total allocation usage (top), number of running microscopic

model simulations (middle) and average number of processes per running micro-scale simulation

(bottom)

2.2. Red Blood Cell Suspension Application

In this example, we present the benefit of our scheduling method for HMM applications with

a surrogate model. Resolving the properties of whole blood on the multiple spatial scales present

in the human body is a significant challenge for a single blood-flow model. Whole blood is a

suspension of deformable red blood cells (RBCs) and as a result has many non-Newtonian flow

properties, for example shear thinning. On spatial scales ≤ 300µm phenomena like the F̊ahraeus-

Lindqvist effect, the RBC free layer and platelet margination require cell resolved blood flow

models which take into account the material properties of the RBCs that influence the emergent

rheology of blood. On scales > 300µm cell resolved models quickly become too expensive and

are not viable options, so continuous models are employed. The ultimate goal of developing an

HMM blood flow model is to simulate blood on scales where only continuous models have been
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applied, informed by the cell resolved nature of whole blood. In this section we present a place

holder 3D HMM blood flow application to highlight the benefit of our scheduling method.

In this application, blood-flow is modelled on the macro-scale as a continuous fluid using

the lattice Boltzmann method (LBM). Also on the macro scale is an advection-diffusion solver

which models the evolution of red blood cell volume fraction (i.e. the haematocrit) profiles. The

micro scale is modelled with the cell resolved blood flow model HemoCell, in which plasma is

modelled by the LBM, the mechanical model of the RBCs are described by a discrete element

method and are couple to the plasma via the immersed boundary method [34, 35]. From each

local haematocrit and shear rate combination on the macro scale, cell resolved micro scale

will simulate perfect sheared environments using Lees-Edwards boundary conditions [24]. Local

viscosity and diffusion coefficients will be measured on the micro scale and passed up to the macro

scale. The local viscosity will be passed to the LBM fluid solver, and the diffusion coefficient will

be passed to the advection-diffusion solver. On the macro scale the LBM fluid solver will take the

local viscosities, and the advection-diffusion solver the difusion coefficients, and both will step

the macro simulation through the next time step calculating new shear rates and haematocrit

profiles for the next iteration. The micro-scale models will resolve blood flow on spatial scales of

∼ 100µm and temporal scales of ∼ 10ms, while the macro-scale models will resolve spatial scales

of centimeters and temporal scales of seconds. A benefit of such an HMM model is that we will

have on the largest scales a continuous blood flow solver which is informed by a micro scale cell

resolved blood flow solver. This should lead to a better resolution of the transport of blood cells

on the largest vessels found in the body. To avoid duplicating shear rate and local haematocrit

microscale simulations, we aim to build a surrogate model (e.g., based on a Gaussian process)

to conduct interpolations for similar parameters. This process decreases the required number of

micro-scale models requested, which in turn decreases computation time. A schematic of this

HMM blood flow model is shown in Fig. 10.

Figure 10. Main structure of the red blood cells HMM example used in this section exhibiting

the different scales (macro and micro)
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Figure 11. Average performance of the cell-suspension LBM solver, representing micro-scale

models. In this example, the system size was 2563 lattice units, and the total number of simulated

cells was 16277

In this study, we replaced the actual surrogate model with the performance graphs in Fig. 5

and 6. The performance of the surrogate model will vary the number of micro-scale models needed

for each macro-scale iteration significantly, which can lead to load imbalance and low utilisation

of the available resources. Thus, the main target of the runtime HMC pattern software is to

schedule this dynamically varying load of micro-scale models in an optimal way on the available

resources.

To understand and improve the scheduling of these micro-scale jobs, we need to profile

the average performance of the micro-scale models first. Figure 11 shows the execution time

of the micro-scale model as a function of the number of processors. In the micro-scale, we

simulated the red blood cells and platelets suspensions in plasma using HemoCell [35]. Total

system was 2563 lattice units, and the simulation contained 16277 red blood cells. In this specific

benchmark, it is clear that the minimal execution time is obtained using 16 processors. Increasing

the number of processors to more than 16 actually increases the execution time. This is a

well-known phenomenon in strong scaling of parallel applications, and is due to increasing the

overhead time as the number of processors increases. Thus, in this example, the boundary limits

for the number of processors for the micro-scale models are Pmin = 1 and Pmax = 16.

To confirm the choice of farming a large number of micro-scale models using the least

number of processors, in addition to the discussion presented in Section 1.2.1, consider the

following example. Assume that Pµ = 1024 processors are reserved for micro-scale models and

that in one macro-scale iteration it is required to run η(t) = 4096 jobs. This is the first phase

of the surrogate model performance (i.e. η(t)Pmin > Pµ). By running the simulation using one

core/node per micro-scale model, four batches are needed to finish, where each batch will take

∼ 3 core hours. This means that a total of ∼ 12 core hours of computing is required. On the

other hand, if 16 processors per micro-scale model were to be used, then 64 batches would be

needed at 30 min each, resulting in a total of ∼ 32 core hours of computational time.

2.2.1. Results

In the following computer simulations the runtime and utilisation for the four cases of

performance shown in Fig. 5 and 6 are measured. Resource utilisation U is defined as U = R/C,
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where R is the actual used number of processors, and C is the capacity, which is the total

number of processors available for the job. The utilisation was measured as a function of wall

clock time during the execution.

In all these simulations, the number of cores allocated for the macro-scale model was PM = 8,

for the surrogate model PS = 1 and for the HMC manager PH = 1. The total number of

cores available for the micro-scale models was Pµ = 206. The degree of freedom selected was

DoF = 48818.

The QCG pilot job used in the experiments was a normal job submitted to Eagle to reserve

a set of resources. After reservation, these resources were then managed using a python script,

the pilot job manager. In this script the user can launch, request and kill jobs dynamically.

In our benchmarks, the pilot job reserves a number of processors first. Then, in the pilot job

manager, the macro-scale model and the HMC manager are submitted. The macro-scale, after

an iteration requests a number of parameters from the surrogate model. The surrogate model

looks in the database, interpolates the missing quantity and requests to run a number of micro-

scale models for the missing quantities. In the benchmarks, we mimic this operation by using

the performance of the surrogate model. The number of micro-scale models and the available

resources are then sent to the HMC manager to suggest the right distribution of the resources

to the pilot job manager. Also, it acts to different phases of the HMM application accordingly.

The pilot job manager then executes the submodels utilising an internal queue on the required

resources, gathers the values from the micro-scale jobs, and sends them back to the surrogate

model.

Figure 12 (top panels) presents the utilisation of the system, with assistance from the HMC

manager and the surrogate model that starts from scratch. The utilisation of the performance of

the surrogate model presented in Fig. 5a (model = scratch, good performance) is shown here in

Fig. 12a (top panel), while the utilisation of the performance of the surrogate model presented

in Fig. 5b (model = scratch, poor performance) is shown in Fig. 12b (top panel).

In Fig. 12a (top panel), in the first macro-scale iteration, a large number of micro-scale jobs

are executed, each executing with Pmin = 1 in a first-in, first-out queue (in our method, we use

sub-queues in the pilot job rather than batches). The utilisation in this phase is high because we

simply exploit all the available resources. At the outset the utilisation is one, which means that

all 206 processors are used as shown in Fig. 12a (middle panel). After a while, between 18–32

jobs are completed, shown as the first few small decreases of the green line.

The blue line in Fig. 12a (top panel), for the second to fifth macro-scale iterations, shows

Pminη(t) < Pµ < Pmaxη(t) phase. The utilisation at the outset of these iterations is one, because

all the processors reserved for micro-scale models are used by running the micro-scale models

with η(t),
⌈
Pµ/η(t)

⌉
. For example, in the second macro-scale iteration (which lasted from 800

to 1100 minutes of the runtime), 142 jobs were run with ∼ 1− 2 cores, each shown in Fig. 12a

the middle and lower panels, respectively. As a result of different micro-scale model execution

times with different numbers of processors per micro-scale model invocation, we notice a gradual

decrease in the utilisation. In this situation, an internal mechanism could be implemented to

use the available cores to refine the surrogate model by proactively (i.e. not informed by the

macro-scale model) executing micro-scale models in yet unexplored regions of the micro-scale

input parameter space. The gradual decrease in the second macro-scale iteration does not occur

in the following iterations (macro-scale iterations 3 to 5), because the number of micro-scale
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Figure 12. Utilisation of the red blood cell HMM application using PJM (top panels) using

the surrogate model from scratch, as shown in case (a) in Section 1.2.2. Good performance

level manifest on the left (model = scratch, good performance), while poor performance level

is displayed on the right (model = scratch, poor performance). The corresponding number of

micro-scale jobs (middle panels) and number of cores per micro-scale job (lower panels) were

decided by the HMC manager. The colours represent the phases, where green is the first phase,

blue – the second, and red is the third. The dashed lines represent the macro-scale iterations

model jobs in iteration 4, for example, is smaller (54 running with ∼ 4 processors shown in blue

in Fig. 12a (middle and lower panels)).

The last macro-scale iteration in Fig. 12a (top panel) falls in the third phase, where the

number of micro-scale jobs is only 12, and the number of cores per micro-scale job run is

Pmax = 16. As is shown by the red line in the graph and also the red lines in Fig. 12a (middle

panel), we run all the micro-scale models in one fast run. This phase is fast, but the utilisation

remains low. In this state, as discussed, we could release the unused processors as the surrogate

is mature enough to replace the need to generate new micro-scale jobs.

While the second case, Fig. 12b (top panel), shows similar behaviour, the surrogate model

is not as effective as for the first case. Figure 12b (middle panel) illustrates the corresponding

number of micro-scale jobs and the average number of processors per micro-scale jobs. Here, we

need to generate more micro-scale jobs to sample parameter space at the outset. This example

also shows that after running a large number of micro-scale jobs for the first three macro-scale

iterations, we reached a steady level where we ran 35 micro-scale jobs in the second phase and

∼ 2 micro-scale jobs in the third phase utilising a dynamic number of cores/nodes.

When a previously developed surrogate model is used, the resulting utilisation of the system

is as shown in Fig. 13 (top panel), and the corresponding number of micro-scale jobs and the

average number of processors per micro-scale jobs are shown in Fig. 13 (middle and lower

panels, respectively). This case shows the situation where the surrogate model must initially

run a large number of micro-scale models at the outset to fill the database rapidly and then

becomes sufficiently effective to replace the need for micro-scale models. The utilisation of the

performance of the surrogate model presented in Fig. 6a (model = developed, good performance)
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Figure 13. Utilisation of the red blood cell HMM application using PJM (top panels) by using

a previously developed model, as shown in study case (b) in Section 1.2.2. Good performance

level manifest on the left (model = developed, good performance), while poor performance level

is displayed on the right (model = developed, poor performance). The corresponding number of

micro-scale jobs is shown in the middle panel. The lower panel shows the corresponding number

of cores per micro-scale job decided by the HMC manager. The colours represent the phases,

where green is the first phase, blue – the second, and red is the third. The dashed lines represent

the macro-scale iterations

is shown here in Fig. 13a (top panel), while the utilisation of the performance of the surrogate

model presented in Fig. 6b (model = developed, poor performance) is shown in Fig. 13b (top

panel).

Figure 13 (top panels) appears similar to the previous case, but we notice that because

the difference in the number of micro-scale jobs requested for each macro-scale step is high,

there are more idle cores in the first phase than for the previous case. Here, we might consider

returning the cores back to the system as expected, reaching the steady state in this case is

faster than in the previous case, and in the subsequent runs the surrogate model replaces the

need for generating new micro-scale jobs, up to where the first few macro-scale iterations are

completed as shown in Fig. 13 (middle panels).

Finally, note that in production runs, the number of iterations on the macro-scale will be

much larger, and if the surrogate model is performing very well, the overall utilisation can be

very small (as, e.g., reported in ref [22]). Once the HMC run is running steadily in phase 3, the

HMC manager should return resources to the system.

Conclusion

We have illustrated the mechanism of running HMM applications using pattern software. In

this paper, two sources of load imbalance in HMC, namely variable execution time and dynamic

number of micro-models, are investigated and a number of solutions are proposed.

First, the large number of micro-scale model simulations at each iteration of the HMC

workflow requires them to be performed inside a single large resource allocation to avoid sig-
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nificant and asynchronous queuing time. In turn, the variable execution time of the micro-scale

simulation induced significant idle periods on part of the large allocation. A pilot job manager

mechanism was introduced to handle internal queuing and execution of these simulations. The

flexibility of how the PJM mechanism in comparison to a pre-assigned rigid batching system

enables drastic improvements of core utilisation lead to reducing of overall ideal time by up to

70%. The improvement was particularly significant on smaller allocations. In addition, facilitated

by the use of a PJM, an optimisation layer has also been used to tackle directly the variability

of execution time. Scaling the individual resource sub-allocation of each micro-scale simulation,

based on predicted execution time, load balancing was even further reduced with 20% shorter

runtime. The adaptive resource allocation was maintained within the range of strong scaling of

the model in order to preserve efficiency.

Second, we propose that the execution of the micro-scale models in the HMM application

should be viewed as three distinct phases. The first phase arises when a very large number of

micro-scale models (Pµ < η(t)Pmax) needs to be executed. In this phase, the appropriate action

is to conduct farming with Pmin processors per micro-scale model. This reduces the overhead,

as demonstrated mathematically and by means of computational simulations. The second phase

occurs when (Pmaxη(t) < Pµ < Pmaxη(t)). In this phase, the required micro-scale jobs are

executed with
⌈
Pµ/η(t)

⌉
cores/nodes. During the last phase, when the number of micro-scale

jobs requested is less than the total number of the available processors for micro-scale models,

the most appropriate action is to run all the remaining jobs using Pmax processors. The surrogate

model is nearly or fully developed at this stage and can replace the need to generate micro-scale

jobs efficiently. At this stage, certainly when many iterations of the macro-scale need to be

simulated, releasing unused processors will result in an increase in utilisation and a reduction

of the computational cost. An HMC assuming four different scenarios of surrogate models was

executed. In each scenario, the number of micro-scale jobs generated at each macro-scale iteration

is shown, the utilisation of the system using a pilot job and the HMC manager, with the focus

on running the micro-scale jobs on the right resources.

Although farming independent jobs is a well-known method, the act of dynamically changing

from one farming phase to another under the control of a dynamically evolving surrogate model,

with its corresponding actions and decisions, is new. In our simulations, we substituted the actual

implementation of Gaussian process regression of the surrogate model with the performance

of a surrogate model, as observed in an HMM for predicting material properties [22]. This

performance figure provides the required number of micro-scale jobs that are needed at each

macro-scale iteration. Finally we note that combining the dynamically changing runtime of the

micro-scale models and the dynamically changing number of micro-scale models to be executed

has not yet been addressed in the paper. However, the combination of the scheduling mechanisms

discussed in Section 1, and the overall HMC phases in Section 1.2.2, should be able to handle

this situation as well.
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