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In recent years, computational capacity of single Field Programmable Gate Array (FPGA)

devices as well as their versatility have increased significantly. Adding to that fact, the High Level

Synthesis frameworks allowing to program such processors in a high-level language like C++,

makes modern FPGA devices a serious candidate as building blocks of a general-purpose High

Performance Computing solution. In this contribution we describe benchmarks which we performed

using a kernel from the Lattice QCD code, a highly compute-demanding HPC academic code for

elementary particle simulations on the newest device from Xilinx, the U250 accelerator card. We

describe the architecture of our solution and benchmark its performance on a single FPGA device

running in two modes: using either external or embedded memory. We discuss both approaches

in detail and provide assessment for the necessary memory throughput and the minimal amount

of resources needed to deliver optimal performance depending on the available hardware. Our

considerations can be used as guidelines for estimating the performance of some larger, many-

node systems.
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Introduction

Quantum Chromodynamics is the theory describing the interactions of quarks and gluons,

explaining why the latter form bound states such as protons and neutrons. One of the charac-

teristic features of this theory is that quarks and gluons form a strongly coupled system in the

low energy regime. As a consequence, it is difficult to extract predictions for the properties of

such a system from First Principles of Physics. Up to now, the only available computational

tool allowing for such calculations are numerical simulations (Monte Carlo simulations) of a

discretized version of the theory, called Lattice Quantum Chromodynamics (LQCD). Tradition-

ally, physicists working in the field of LQCD searched for the most performant, vector machines

consisting of a large number of compute nodes, and have designed many new HPC solutions:

QCDOC [5], APE [1], QPACE [3], just to name a few. Currently, GPU and ARM processors

are considered for the next generation of supercomputing machines and it is an open question

whether FPGA devices could be used as an alternative.

In the discretized version of Quantum Chromodynamics the basic degrees of freedom are as-

sociated to each point of a four-dimensional grid representing a finite volume of four-dimensional

space-time. Sizes of such volumes vary from V = 106 up to V = 108 points. The most compute-

intensive part of any such simulation is the inversion of the Dirac matrix, which is of size

(24V ) × (24V ). The matrix has a sparse structure because it describes the nearest-neighbour

interactions. The Dirac matrix D(n,m)ABαβ acting on the vector ψ(n) can be written down as

follows [9]
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D(n,m)ABαβ ψ
B
β (m) = (mq + 4)ψAα (n)+

+
1

2

3∑
µ=0

[
UABµ (n)P−µαβ ψ

B
β (n+ µ̂) + U †,AB(n− µ̂)P+µ

αβ ψ
B
β (n− µ̂)

]
. (1)

The most elementary computational block is the evaluation of the single stencil, i.e. eval-

uation of the right hand side of (1) for a given value of index n. Note that the coefficients of

D(n,m)ABαβ matrix differ for each m, i.e. U complex-valued 3×3 matrices and ψ complex-valued

3-element vectors depend on position m. Therefore, each stencil involves loading of eight U(n)

matrices and nine spinor fields from the neighboring lattice sites, which in total corresponds to

360 input words. In case of double precision, this amounts to 2880 input bytes. One can exploit

the structure of SU(3) matrices and parametrize them in terms of 10 input words each, instead

of 18 in the naive formulation (9 real and 9 imaginary entries). We return to this point in Sec-

tion 2.2. U ×ψ matrix-vector multiplications require 1464 floating point operations for complex

additions and multiplications. P± are real-valued 4 × 4 constant matrices, mq is a real param-

eter corresponding to the quark mass, µ labels directions in the four-dimensional space-time.

Repeated indices are summed within the ranges: α, β = 1, . . . , 4, A,B = 1, 2, 3. For unexplained

notation, please see [9] or [7]. One of the simplest algorithms allowing to invert such a matrix

is an iterative conjugate gradient algorithm. The relevance of this algorithm is demonstrated by

the fact that HPCG benchmark has been introduced since November 2017 as a new ranking of

supercomputers published by TOP500 organization. Such benchmark differs from the tradition-

ally used Linpack benchmark where the employed matrix was dense. The argument behind the

HPCG benchmark is that sparse matrix computations in many cases are more representative of

the variety of HPC applications which run on a supercomputer. Indeed, the iterative solver of

the type of conjugate gradient is, for instance, at the heart of Monte Carlo simulation of QCD.

The rest of this article is organized as follows. In the next section we specify the details of

the implemented algorithm as well as summarize the description of the kernel which is being

hardware-accelerated. Subsequently in the following Section, we propose two implementations

on the FPGA devices which differ by the location where the main data is stored, either these

are registers in the programmable logic, or an external DDR memory bank attached to the

programmable logic. In Section 3, we compare and discuss the achieved performances using

both approaches. Eventually, we conclude and point out future research directions.

1. Kernel Description

In this work, we consider an improved version of the conjugate gradient algorithm which

allows us to test different floating and fixed point precisions without a deterioration of the ulti-

mate solution. Similar considerations for GPU were presented in [4]. The algorithm intertwines

iterations in low and high precision, working mainly in low precision and correcting a possible

systematic error by a high precision iteration. Our algorithm follows the one suggested in [8]

and is shown in Algorithm 1. We provide an exact form of the mixed precision conjugate gra-

dient algorithm implemented in this work to show which parts have been hardware accelerated

and what is the interplay between parts of the algorithm requiring implementations in different

precision. In both cases, the most time consuming part is matrix multiplications in lines 2, 14

and 24 of Algorithm 1.
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Algorithm 1 Residual Guided CG algorithm

1: ψhigh ← ψhigh
0

2: rhigh0 ← ηhigh −
(
D†D

)high
ψhigh

3: shigh0 ← ||rhigh0 ||
4: r0 ← rhigh

0

shigh0

5: l← 0

6: while shigh ≥ rhighmin do

7: n← 0

8: ψ0 ← 0

9: r0 ←
rhighl+1

shighl+1

10: p0 ← pk −
(
r0 · pk

)
r0

11: α0 ← 0

12: β0 ←
shighl+1

shigh
l ρk

13: while n < k do

14: qn ← D†Dpn

15: αn ← ρn
pn·qn

16: ψn+1 ← ψn + αnpn

17: rn+1 ← rn − αnqn
18: ρn+1 ← rn+1 · rn+1

19: βn ← ρn+1

ρn

20: pn+1 ← rn+1 + βnpn

21: n← n+ 1

22: end while

23: ψhigh
l+1 ← ψhigh

l + shighl

(
ψk + αkpk

)
24: rhighl+1 ← bhigh −

(
D†D

)high
ψhigh
l+1

25: shighl+1 ← ||r
high
l+1 ||

26: l← l + 1

27: end while

We would like to hardware accelerate them and briefly summarize the FPGA implementation

of these kernel functions. We follow what was presented in [7]. In particular that Reference

contains a description of C++ data structures used for the implementation as well as relevant

details of the memory allocation which allows for a fully pipelined execution of the kernel.

Fragments of C++ and HLS directive codes are provided and discussed in that Reference.

For both high and low precisions of the kernel, implementation is similar: a single function

involves a loop over a subvolume and an evaluation of the stencil for each site of the lattice.

Evaluation of a single stencil is fully parallelized as far as data dependencies allow, this and all

stencils are pipelined.

All operations involved in the estimation of a single stencil are graphically shown in Fig. 1.

The evaluation naturally splits into 4 stages. The clock cycles provide an estimate of the amount

of parallelization and correspond to the number of clock cycles required to finish the computation

at a given stage in double precision. In the first stage, all the necessary data is copied from the

BRAM memory blocks to local registers which only requires one clock cycle. In stage 2, linear

combinations of input data, 8 additions and 8 subtractions of vector type are evaluated. They are
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Figure 1. Computation sequence of the stencil solver

all performed in parallel, taking 14 clock cycles, which corresponds to a single addition of double

numbers in programmable logic. The most compute-intensive stage 3 involves SU(3) matrix by

vector multiplications. In total, 1152 operations are performed. Complete parallelization allows

to execute them in a 5-layer operation cascade, taking in total 5 ∗ 14 = 70 cycles. Finally,

at stage 4, all contributions are added up to the final result. Because of the dependencies

between consecutive partial results, a 4-layer operation cascade gets created, which in total

takes 57 = (4 ∗ 14) + 1 clock cycles, 4 additions plus one data copy. Overall, the kernel requires

142 clock cycles and a total of 1464 basic operations to compute the final result since the

reception of the input data. The kernel is fully pipelined: i.e. it can accept new input data at

each clock cycle and produce results with latency of 142 cycles.

2. Two Approaches

There are two approaches one can follow in order to provide required data to the kernel.

One can divide the entire problem into small parts so that the entire set of data for a single part

fits into the BRAM memory of the device. Alternatively, one can store the entire set of data

in the DDR die attached to the programmable logic and stream the data through the link. We

discuss performances of the both solutions below.

2.1. A Smaller Lattice Stored in BRAM Memory

This is the approach we followed in [7]. We showed that lattices up to the size of 12×83 data

points in each direction in double precision can fit into the internal memory of the programmable

logic of the FPGA devices available currently on the market. In Fig. 2, we show the required

number of URAM blocks for a given size of the lattice for single and double precision. As one

can in that figure, the storage requirements are not linear because it is crucial to store data

in PL in as many separate PL local registers blocks as possible in order to allow the compiler

to take advantage of the natural parallelism of FPGA devices. This is due to the fact that in

a single PL clock cycle only one memory element can be read from the BRAM block. In the
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Figure 2. Memory usage as a function of the initiation interval

computation of a single stencil, one needs eight different U matrices and we insist that they are

stored separately. Although this requires duplicating the amount of stored data, the matrices

U(n) and U †(n) are stored separately, the gain is considerable. The HLS directives ensuring

such memory allocation were described in [7]. Thanks to that, the stencil evaluation can be fully

pipelined, i.e. the hardware block can accept new input data at each clock cycle. The resulting

performance simulated in software is 812 GFLOPs for single precision and 406 GFLOPs for

double precision with the PL running at 300 MHz.

2.2. A Larger Lattice Streamed from the DDR Memory

The way to operate on larger data sets is to keep the data in the DDR die attached to

the programmable logic and process the data in a streaming mode. This was investigated on

the Maxeler system in [6]. The U matrices and ψ spinors are prepared beforehand into sets

corresponding to consecutive stencils and are streamed continuously from the DDR into the

logic. The limitation of this solution is the throughput of the memory link between the DDR

and the logic. Using SDAccel and an openCL implementation of the CG algorithm, we verified

that one can send 256B for the Xilinx U250 device from the DDR memory to the PL part

per clock cycle, working at the frequency of 300 MHz. Four channels are available aggregating

to 77 GBps throughput. In order to decrease the amount of data transferred, we change the

representation of U matrices, and following [2], we use a 10 parameter parametrization. We

trade two more parameters and avoid computing trigonometric functions in the programmable

logic. The reduced set of data translates to an initiation interval of 5 and 9 clock cycles for the

compute kernel for single and double precision respectively, i.e the programmable logic has to

wait 5/9 clock cycles to gather enough data to start a new computation. The performance in that

case would approximately be equal to 86 and 46 GFLOPs respectively, which is comparable to

the one quoted in [6] on the Maxeler system. However, if we also count the additional operations

needed to recover U matrices from their reduced form, the achieved sustained performance

reaches 194 GFLOPs for single precision. In Fig. 3, we show how the required throughput

depends on the initiation interval. The calculation assumes the reduced form of U matrices. The

smaller the initiation interval is, the shorter is the time in which the data has to be transferred.
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Figure 3. Transmission rates as a function of the initiation interval

Figure 4. Performance as a function of the initiation interval

We show the throughput estimates for single and double floating point precision. Knowing the

throughput between the DDR and the programmable logic on a given device, one can easily read

the corresponding minimal initiation interval and henceforth the resulting performance, which

is shown in Fig. 4 for both the single and double precision case.

Finally, in Fig. 5 we show how the hardware resource consumption depends on the initiation

interval for single and double floating point precision but also for a more FPGA friendly 32 bit

fixed point data format. In this streaming scenario one can relax the initiation interval of one

clock cycle imposed in the first approach. The memory throughput being the bottleneck, one

can implement the kernel with a lower initiation interval because in any case several clock cycles

are needed to collect all the necessary data for a single stencil computation. The figure shows

an indicative percentage of all available resources counting together all DSP, LUTs and BRAM

blocks. We see that in the described case where the memory throughput imposes an initiation

interval of 5 clock cycles the compute kernel uses only 20% of the available resources for double

precision.
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Figure 5. Resources consumption as a function of the initiation interval

3. Discussion

The presented results allow understanding various constraints limiting performance of the

investigated kernel on FPGA devices. Starting from the embedded memory scenario, the prac-

tical problems that are being analyzed are larger by a factor of the order of 4096. One would

probably use that amount of FPGA devices running in parallel and exchanging boundary data

directly from and to the programmable logic through the embedded transceivers. On the other

hand, in principle, the entire set of data could be stored in the DDR in the external memory

scenario. However, the wall clock time to the solution on a single FPGA device would be imprac-

tically long. In that case, one would also resort to a many-node system where the computations

could be speed up by running them in parallel. In principle, neither of the two scenarios is

obviously superior. The number of required nodes can be different in both solutions and the

details would depend essentially on the memory throughput of the FPGA device used. With the

numbers provided above, such estimations can be put on a solid ground.

Conclusions

In this contribution, we discussed the applicability of FPGA devices to High Performance

Computing solutions. We used the academic code for Monte Carlo simulations of Quantum

Chromodynamics as a benchmark. In traditional computer architectures, this code is memory-

bound due to the unfavorable ratio of the amount of data to be loaded to the amount of

floating point operations to be executed be the most elementary kernel function. On the available

programmable logic hardware, the problem turns out to be memory bound in the scenario where

data is streamed from the DDR die, which will be considerably improved with the arrival of

Xilinx Alveo U280 cards with a 480 GB/s memory bandwidth between DDR and programmable

logic. In the scenario where data is stored in the embedded memory, the problem’s limitation is

the available size of the internal memory. Both cases seem to be scalable and thus offer a viable

proposal for a larger scale infrastructure.
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