
How File-access Patterns Influence the Degree

of I/O Interference between Cluster Applications

Aamer Shah1, Chih-Song Kuo2, Akihiro Nomura3, Satoshi Matsuoka4,

Felix Wolf1

c© The Authors 2019. This paper is published with open access at SuperFrI.org

On large-scale clusters, tens to hundreds of applications can simultaneously access a parallel

file system, leading to contention and, in its wake, to degraded application performance. In this

article, we analyze the influence of file-access patterns on the degree of interference. As it is by

experience most intrusive, we focus our attention on write-write contention. We observe consider-

able differences among the interference potentials of several typical write patterns. In particular,

we found that if one parallel program writes large output files while another one writes small

checkpointing files, then the latter is slowed down when the checkpointing files are small enough

and the former is vice versa. Moreover, applications with a few processes writing large output files

already can significantly hinder applications with many processes from checkpointing small files.

Such effects can seriously impact the runtime of real applications—up to a factor of five in one

instance. Our insights and measurement techniques offer an opportunity to automatically classify

the interference potential between applications and to adjust scheduling decisions accordingly.

Keywords: performance, I/O, file-access pattern, interference, benchmarking.

Introduction

The computational demand of HPC applications is continuously growing, raising the per-

formance expectations of cluster users to unprecedented levels. In order to accommodate such

demands, HPC systems frequently employ specialized designs such as multi-dimensional torus

networks, GPU-based accelerators, and powerful parallel file systems. The latter are needed to

provide service for an enormous amount of file accesses in parallel. Such parallel file systems

are installed as centralized resources with a middle layer of I/O servers connected to storage

devices at one end and to compute nodes at the other. Decoupling compute resources from

I/O resources allows for better management and scalability of the I/O subsystem. However, the

centralized design also means that multiple applications may share the same file system. This

can lead to contention in the event of simultaneous file access and can substantially degrade ap-

plication performance. Applications that perform frequent file access requests or access massive

amounts of data are especially sensitive to such conditions, adding an element of variability to

their performance [36].

HPC applications that perform frequent or massive file access requests are quite common.

Examples include data-intensive codes such as MADCAP cosmic microwave background ana-

lyzer [34] and GCRM global cloud system resolving model [40]. They both write massive amounts

of data during execution, resulting in numerous write requests. In contrast, OpenFOAM contin-

uum mechanics solver [17] and Community Atmosphere Model (CAM) [22] of the Community

Earth System Model (CESM) [33] frequently checkpoint their state, resulting in small but re-

curring writes. Overall, very different classes of file-access patterns can be distinguished. Not

only do these patterns access the file system in unique ways, but their sensitivity to interference

1Laboratory for Parallel Programming, Technische Universität Darmstadt, Darmstadt, Germany
2Taiwan Semiconductor Manufacturing Company Limited, Hsinchu, Taiwan
3Global Scientific Information and Computing Center, Tokyo Institute of Technology, Tokyo, Japan
4Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo, Japan

DOI: 10.14529/js�190203

2019, Vol. 6, No. 2 29



from other applications that access the file system at the same time also varies widely. Likewise,

they actively interfere with other I/O-intensive applications in different ways. All this makes ac-

cess patterns to be an important factor for file-system contention. Our initial experiments with

different access patterns revealed negligible interference in the case of read-read and read-write

contention. These results are also consistent with word-of-the-mouth understanding in the HPC

community. Therefore, we concentrated our investigation on write-write contention and the most

common access patterns involved.

File system contention and the associated performance degradation are well-known [8]. In

this context, the influence of request size and process count has already been studied from a

single-application perspective [21], while process count has been identified as a factor of domi-

nance when two applications compete for the file system [29]. Similarly, file-access patterns have

been studied in various contexts [12, 14, 20, 25, 37]. The novelty of our research is that we

study common write patterns found in HPC applications from the perspective of simultaneous

access from different applications. To this end, we first developed a micro-benchmark capable of

producing three distinct file-access patterns, simulating those of real applications. Two of these

patterns mimic application checkpointing and out-of-core processing, while the third pattern

mimics writing large files. We explored the interference potential of these patterns by running

them simultaneously against each other, in the form of either micro-benchmarks or realistic

applications covering check-point-intensive and data-intensive access patterns. We not only ob-

served different levels of interference between different patterns, but also identified some general

rules such as writing large output files dominating checkpointing at smaller checkpoint sizes,

with the trend being reversed for larger checkpoint sizes.

In our previous work, we analyzed write access patterns and their effect on interference [6].

In this work, we expand on the topic with a more realistic checkpointing pattern, evaluate how

the interference potential depends on the number of processes the application runs with, and

confirm our findings with a larger set of production codes. We summarize our contributions as

follows:

• An experiment design that allows the quantification of interference between different file-

access patterns.

• An I/O-server monitoring capability added to the hitherto purely application-centric in-

terference profiler LWM2 [9], enabling us to isolate distinct interference phenomena even

in noisy environments.

• An analysis of the interference potential of common file write patterns in HPC applications,

including the identification of a typical combination with high interference potential.

Taken together, our results pave the way for an effective reduction of interference in the

future. Specifically, it brings us much closer to the automatic recognition of applications with

high interference potential, allowing their I/O to be separated either in space or time.

The remainder of the paper is organized as follows. First, we provide the necessary back-

ground information on parallel file systems in Section 1. In Section 2, we present our approach,

including a taxonomy of file-access patterns, an explanation of our experiment design, an intro-

duction to the interference profiler LWM2, and a description of the I/O server monitor added to

LWM2 for the purpose of this study. After that, we present our results in Section 3, ranging from

micro-benchmark-only experiments to measurements with realistic applications. Finally, we re-

view related work in Section 4 before we draw our conclusions and outline future perspectives

in Conclusion section.

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

30 Supercomputing Frontiers and Innovations



1. Parallel File Systems

In order to accommodate an increasing number of concurrent file accesses, cluster file systems

evolved from a simple client-server model in the style of NFS into usually dedicated clusters

of servers and storage devices called parallel file systems. In the most common configuration,

a parallel file system connects servers and storage devices via a dedicated network, while it

connects servers to compute nodes via a shared message-passing network, as shown in Fig. 1.

Clients running on compute nodes forward file-access requests to the I/O servers. Then I/O

servers then distribute them to the attached storage devices—according to the mapping of files

onto storage devices. This allows handling simultaneous file accesses with better performance.

Additionally, striping individual files across multiple storage devices supports efficient parallel

access to a single file. Following these general design principles, several implementations such

as Lustre, GPFS, FhGPS, PVFS, PanFS, and HDFS emerged. Below, we describe two popular

parallel file systems used in our experiments in more details.

1.1. Lustre

Lustre is a file-storage system for clusters used by many of the Top500 HPC systems [24].

It offers up to petabytes of storage capacity and provides multiple gigabytes per second of I/O

throughput. Its architecture distinguishes two basic types of servers: metadata servers (MDSs)

and object storage servers (OSSs), as shown in Fig. 1. An MDS stores file-system structure

information, including directory layout and file attributes. An OSS stores the actual file-data

stripes on the attached object storage targets (OSTs). When an I/O request is made, MDS and

OSS internally perform different types of file accesses. The MDS performs search and small read

and write operations on the file structure information, while the OSS performs potentially large

reads and writes on the actual file. Decoupling metadata from data makes it possible to optimize

each server type for its most frequent access pattern.

C
o
m
p
u
te

N
o
d
e

C
o
m
p
u
te

N
o
d
e

C
o
m
p
u
te

N
o
d
e

C
o
m
p
u
te

N
o
d
e

Storage
Server

Storage
Server

Metadata
Server

RAID
Storage

RAID
Storage

Disks Disks Disks Disks

Figure 1. A typical Lustre configuration, with separate I/O servers for metadata and file storage

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 31



1.2. GPFS

General Parallel File System (GPFS) is a proprietary parallel file system developed by

IBM [3]. It is often found on Blue Gene systems but is also available on other HPC clusters

such as TSUBAME 2.5. It supports multiple configurations, including the shared-disk-cluster

configuration, in which every compute node manages a part of the file system. However, on large

HPC systems, a separate I/O subsystem is more common. In such a configuration, GPFS can

span an I/O subsystem with thousands of nodes. GPFS stores data files and their associated

metadata on the same block-based devices called network shared disks (NSDs). This makes

GPFS also suitable for applications with small file accesses such as Web servers. GPFS stripes

data files across all disks in a storage pool, achieving high performance. In addition, internal

storage pools can be defined to provide different levels of availability and performance for certain

files.

2. Approach

Many HPC applications are data-intensive, that is, they perform extensive I/O operations.

They employ different I/O libraries and file formats and produce different process-to-file ratios.

Because of the fact that a significant proportion of applications still use POSIX-IO or MPI-IO

in the classic one-file-per-process manner [15], we concentrate our experiments on this configu-

ration, while also evaluating MPI shared-file scenarios. Given that using MPI-IO with one file

per process is essentially equivalent to POSIX-IO [34], at least on our test systems and on many

others, our micro-benchmarks exercise only MPI-IO.

Algorithm 1 Open-Write-Close

loop

Open New File

Write chunksize

Flush I/O Writes

Close File

end loop

Algorithm 2 Write-Seek

Open File

loop

Seek to the beginning

Write chunksize

Flush I/O Writes

end loop

Close File

Algorithm 3 Aggregate-Write

Open File

loop

Write chunksize

end loop

Close File

Figure 2. Three I/O access patterns

2.1. File Access Patterns

HPC applications exhibit a variety of file access patterns, whose frequent checkpointing,

file accesses for out-of-core processing, and writing of large output files are considered here.

We implemented three characteristic patterns corresponding to these three use cases as micro-

benchmarks, ran them with a range of file sizes, and measured their interference potential when

executed against each other as well as against realistic applications. Figure 2 shows the pseudo-

code of the three patterns.

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

32 Supercomputing Frontiers and Innovations



Open-write-close. The first considered pattern we consider is called open-write-close (OWC)

(Listing 1). In this pattern, each process creates a new file, writes data to it and then closes it.

In the next iteration, a new file is created again for data writing. The pattern is commonly used

for checkpointing in many applications, such as Flash [30], CESM [33] and OpenFOAM [17].

This access pattern generates a large number of metadata operations, while the actual amount

of data written to files can be small. On systems with limited metadata resources such patterns

can quickly create a bottleneck at scale. Compared to our previous work [6], we have updated

the open-write-close pattern to create a new file in each iteration, mimicking the checkpointing

pattern in a more realistic fashion.

Write-seek. In the write-seek (WS) pattern (Listing 2), a process opens a file at the beginning.

It then writes a chunk of data to it, and then seeks back to the beginning of the file. At the end

of execution, the process closes the file. This pattern is similar to the open-write-close pattern

in the sense that it performs a massive number of small file accesses. However, it generates less

metadata traffic as it reuses the same file, keeping it continuously open. Between individual

writes, only seek operations take place. The write-seek pattern captures a simplified version of

file accesses during out-of-core processing of HPC applications, such as in MADCAP [28]. Facing

memory capacity pressure, HPC applications often have to resort to out-of-core processing. This

means they write data they cannot hold in the main memory temporarily to a file, and read

it back once it needs to be processed. This results in a write-seek-read pattern. The pattern

can have many different instantiations with respect to write size, seek size, and read size. For

simplicity as our goal is measuring write-write interference potential, we have reduced the pattern

to a write followed by a complete seek.

Aggregate-write. In the aggregate-write (AW) pattern (Listing 3), a process opens a file at

the beginning and then continues to append chunks of data to it. The file gets closed at the

end of execution. This pattern is similar to large writes in such applications as MADCAP [34]

and GCRM [40]. The pattern involves a few metadata operations but many write operations,

resulting in large file sizes. At scale, this pattern can substantially challenge the performance of

an I/O subsystem.

Client-side I/O caching requires flushing the I/O traffic after every write operation for the

open-write-close and the write-seek patterns. Otherwise, writes of small chunks remain cached

in buffers for each OST in the Lustre client and are overwritten with the next write. We have

also found flushing of write buffers in real applications to be a common practice. Therefore, our

addition of buffer flushes is not unusual. The need for flushes does not arise for writes of large

chunks if the chunk size is larger than the OST buffer size. Moreover, this issue does not affect

aggregate-write, in which small writes are initially collected in the OST buffer and eventually

are committed to the file system. In order to have a consistent benchmark, writes were flushed

for both Lustre and GPFS, and for all chunk sizes.

2.2. Capturing Interference

To capture incidents of interference, we run the patterns side by side and measure the

change in throughput in comparison to an isolated run. We call the benchmark whose throughput

degradation we are interested in the probe. The throughput degradation serves as a quantification

of the passive interference it suffers. The benchmark causing this degradation through active

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 33



interference is called the signal. To study the way that interference effects evolve over the runtime

of a specific, more complex probe application, we let the signal benchmark to also produce its

pattern in a periodic fashion, with I/O activity being interrupted by silent phases without the

I/O activity. Whenever the signal shows activity, the probe may suffer a dent whose depth

indicates the severity of the interference.

In order to measure how the I/O throughput of an application changes, we use the profiler

LWM2 [9] after extending it to suit our requirements. LWM2 is a lightweight profiler designed to

collect the most basic performance metrics with as little overhead as possible. The I/O metrics

relevant to our study are all measured in dynamically loaded interposition wrappers. One aspect

important to our study is the ability of LWM2 to represent performance dynamics in time slices.

In addition to production of a compact performance summary covering the entire runtime, LWM2

splits the execution into fixed-length time slices and generates a profile for each of them. The

time slice boundaries are synchronized across the entire system by aligning them with the system

time. As a result, the simultaneity of performance phenomena occurring in different applications

can be easily established. This is useful because it may indicate a causal relationship between

these phenomena. The duration of time slices is configurable. In our experiments, we use a

time-slice length of 4 seconds and a period length of 24 seconds for the periodic version of our

micro-benchmarks. In this way, each period covers at least a few time slices.

However, the mostly application-centric perspective of LWM2 confronts us with two chal-

lenges: noise from other applications not related to our experiments and irregular behaviors of

the I/O servers themselves. Ideally, I/O interference experiments should be conducted in a fully

controlled, noise-free environment. In practice, however, reserving an entire production cluster

for an extended period of time is too expensive. Moreover, the throughput delivered by I/O

servers is often non-uniform. For example, the exhaustion of cache space may result in a sudden

throughput drop. As a consequence, such irregularities may further blur the interference effects

we want to study.

In order to be able to keep our measurements as clean as possible from these two effects, we

extended LWM2 to monitor activities of the I/O server during execution of an application as

well. The server activities are captured in every time slice, allowing us to correlate events across

applications and I/O servers. In particular, this allows runs to be filtered out where the file-

server load is 10% higher than the application I/O traffic captured by POSIX/MPI-IO wrappers.

In addition, server-side monitoring allowed us to learn more about certain non-uniform but to

some degree predicable behaviors, which we are now able to exclude from our measurements, as

explained in Section 2.3. For both GPFS and Lustre, we estimated the I/O traffic to and from

the servers by profiling the InfiniBand counters of the servers. Moreover, for Lustre, we parsed

the diagnostic data updated by the Lustre client software running on each node to capture the

amount of reads and writes from/to the I/O servers.

2.3. Server-side Imbalance

In some experiments, we observed substantial differences among the execution times of

individual processes of an application that occurred sporadically with both file systems. In such

cases, most processes finished within the expected time, while the remaining ones had to keep

performing I/O for a significantly longer duration, sometimes more than twice as long, as shown

in Fig. 3a. Such observations are not uncommon and have been reported before [5]. One major

factor revealed in a closer investigation of the imbalance effect was unbalanced load on the file-

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

34 Supercomputing Frontiers and Innovations



0 20 40 60 80

32

64

96

128

160

192

224

256

Execution time [s]

M
P
I
ra
n
k

a) Default

0 20 40 60 80

32

64

96

128

160

192

Execution time [s]

M
P
I
ra
n
k

b) 1 file / OST

Figure 3. Mapping one file to one OST reduces the runtime imbalance among processes

server side, as shown in Fig. 4. In particular, this happened with Lustre, where files are randomly

assigned to an OST in the one-file-per-process mode.

When an OST was shared by many processes, its performance dropped, which in turn

affected the throughput of the associated I/O server. We confirmed this observation by artificially

enforcing an equal number of files per OST in a small experimental run, which reduced the

disparity of execution time by more than 75%, as shown in Fig. 3b. However, such enforcement

is not feasible in a real world scenario, as it requires the number of processes to be a multiple of

the number of OSTs. With GPFS, the process imbalance effect occurred to a lesser extent with

large files because they were automatically striped across all NSDs, but more predominantly

with small files below the stripe size presumably for the opposite reason. Besides the OST/NSD

load imbalance, other factors, such as the straggler phenomenon [5], might also contribute to

the imbalance.

To accommodate the variance resulting from this imbalance, while still being able to discern

interference effects, we considered only the balanced part of a run. This approach is justifiable

since the imbalance only affects the later stage of a run, in which only a small portion of the

total I/O volume is written. In practice, we found that the I/O traffic in this tail-off stage is

usually less than 10%. As a result, we calculated the throughput drop and runtime dilation, our

comparison metrics, only up to the moment when the first of the two simultaneously running

programs had written 90% of its data volume. Even though this empirical technique did not

completely remove the effects of the server-side imbalance, it reduced the resulting imprecision

significantly and consistently, while preserving the effect of interference.

3. Evaluation

This section presents the results of our interference experiments. In these experiments, we

first ran pairs of our micro-benchmarks against each other to study the interaction of the different

patterns in their purest form. To confirm our findings, we then executed the micro-benchmarks

against three realistic applications, OpenFOAM, MADbench2, and HACCIO, used for simu-

lations of fluid dynamics, cosmic background radiation, and collisionless cosmic fluid creation,

respectively. Finally, we analyzed the interference effect observable between two instances of

each of these applications.

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 35



0 10 20 30 40

0

1

2

3

Time slices

I/
O

se
rv
er
s

0

2

4

6

8
·109

Figure 4. Write throughput of I/O servers. The performance of server 3 is degraded, leading to

a longer execution time of I/O operations and hence the application

3.1. Environment

The results were obtained on the TSUBAME 2.5 supercomputer hosted at Tokyo Institute

of Technology, Japan. The cluster comprises nodes in different configurations. The nodes used

in our experiments make up the majority of the cluster and are equipped with two Intel Xeon

X5670 (Westmere-EP, 2.93 GHz) 6-core processors, three NVIDIA Tesla K20X (GK110) GPUs,

and 58 GiB DDR3 main memory. The cluster employs a two-rail fat-tree InfiniBand 4X QDR

network, used both for message passing and file I/O traffic. The peak performance of the cluster

is 2843 TFLOPS.

TSUBAME 2.5 offers GPFS and Lustre file systems for parallel I/O at different mount

points, which are frequently updated. The configuration used in our experiments is as follows.

GPFS on /data0 is hosted on four file servers (NSD servers), each connected to 14 RAID

storage devices (NSDs), while Lustre on /work1 is hosted on eight file servers (OSSs), each of

them connected to 13 RAID storage targets (OSTs). We used only these mount points in our

experiments. On Lustre, metadata requests are handled by one MDS server with one additional

standby server. The qos threshold rr parameter of Lustre has been set to 16%, meaning

that storages are selected mostly in a round robin fashion. Additionally, TSUBAME 2.5 also

provides 120 GB SSDs on compute nodes as scratch space. All file servers are equipped with two

InfiniBand 4X QDR adapters, connecting them to one of the two rails of the fat-tree network.

Table 1 provides a summary of the two file systems on the mount points we used.

Table 1. Specifications of the file systems on TSUBAME 2.5

used in our experiments

PFS Mount Metadata File disks Bandwidth

point server server per server

GPFS /data0 N/A 4 14 20 GB/s

Lustre /work1 1 8 13 50 GB/s

3.2. Experimental Setup

Except for the experiments comparing patterns at different process counts, a single instance

of a mirco-benchmark or an application consisted of 256 processes, utilizing 64 compute nodes.

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

36 Supercomputing Frontiers and Innovations



As the experiments were carried out on a production system, we took care of filtering out runs

with more than 10% external noise. The filtering was done using the I/O server monitoring

module of LWM2. We also repeated each experiment five times and took the best-performing

run (i.e., with the lowest degree of external interference).

We executed patterns with file sizes ranging from 1 MiB to 256 MiB on a logarithmic scale.

For the open-write-close pattern and write-seek pattern, this meant that a file of the specified

size was written repeatedly, while for the aggregate-write pattern this meant that each write

operation had the specified buffer size.

3.3. Micro-benchmarks

In order to understand the interaction of different I/O access behaviors, we first paired up

the three access patterns to form a collection of interference scenarios. We ran each of the three

patterns against itself and against the other two, resulting in six experiments. For the purpose of

interference quantification, however, we had to consider each micro-benchmark once as a signal

and once as a probe, resulting in a total number of nine scenarios (i.e., {OWC,WS,AW}2).

Table 2. Write bandwidth observed in an experimental run on Lustre when probe

open-write-close is exposed to three different signal patterns at a chunk size of

1 MiB

Signal

Open-write-close Write-seek Aggregate-write

Standalone Bandwidth [GB/s] 28.4 31.6 42.2

Signal
Bandwidth [GB/s] 16.1 19.8 3.8

Degradation [%] 43.31 35.76 9.95

Probe
Bandwidth [GB/s] 16.3 16.8 9.6

Degradation [%] 42.61 40.85 66.2

Table 2 shows the write throughput when an open-write-close probe is exposed to three

different signal patterns. For both the probe and the signal patterns, we show the standalone

and the interfered throughput. We also quantify severity of the interference effect in terms of

the percentage degradation of the throughput T , defined as:

T =
Tstandalone − Tinterfered

Tstandalone
× 100.

A high value of the degradation indicates severe interference inflicted by the signal pattern.

As the focus of this paper is the severity of the interference, we restrict ourselves to relative

throughput degradation figures in the remainder of the paper.

3.3.1. Access Patterns

We executed the complete set of combinations on both GPFS and Lustre for chunk sizes

of 1 MiB, 16 MiB, and 256 MiB. Figure 5a shows a throughput drop observed with all pattern

combinations, for chunk sizes of both 1 MiB, 16 MiB, and 256 MiB. With the smaller chunk

sizes, we found aggregate-write to have a clearly higher interference potential than the other two

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 37



open
-write
-close

write
-seek

aggregate
-write

0

20

40

60

80

100

serialized
T
h
ro
u
gh
p
u
t
d
ro
p
[%

]

Open-write-close

1MiB 16MiB 256MiB

open
-write
-close

write
-seek

aggregate
-write

Write-seek

1MiB 16MiB 256MiB

open
-write
-close

write
-seek

aggregate
-write

Aggregate-write

1MiB 16MiB 256MiB

a) GPFS

open
-write
-close

write
-seek

aggregate
-write

0

20

40

60

80

100

T
h
ro
u
gh
p
u
t
d
ro
p
[%

]

Open-write-close

1MiB 16MiB 256MiB

open
-write
-close

write
-seek

aggregate
-write

Write-seek

1MiB 16MiB 256MiB

open
-write
-close

write
-seek

aggregate
-write

Aggregate-write

1MiB 16MiB 256MiB

b) Lustre

Figure 5. Throughput drop when the patterns are executed against each other. A higher bar

means lesser throughput and higher passive interference. The top patterns indicate the probe,

while the patterns below the x-axis indicate the signal

patterns. When open-write-close and write-seek are executed against each other, their through-

put drops by about 45% to 55%. This can be explained by the equal sharing of I/O resources

between them. However, concurrent execution of aggregate-write against the other two patterns

reduces the latter’s throughput by more than 80%, while the effect of the two other patterns on

aggregate-write itself is much smaller. This indicates that aggregate-write dominates these two

patterns at a chunk size of 1 MiB and 16 MiB, occupying most of the I/O resources. At a chunk

size of 256 MiB, the I/O resources are distributed more evenly among the patterns. It can be

seen that open-write-close is less affected by aggregate-write compared to the 1 MiB case, while

aggregate-write is more affected by the other two patterns. Open-write-close, at chunk sizes

16 MiB and 256 MiB, when executed against itself, becomes serialized, that is, one pattern of

the pair executes first, almost completely degrading the second pattern during first’s execution.

We repeated the same set of experiments on Lustre. The results from the nine pair-wise

combinations of patterns for 1 MiB, 16 MiB, and 256 MiB are shown in Fig. 5b. The general

trend of the interference potential for the three chunk sizes is the same as on GPFS but with

different intensities. At a chunk size of 1 MiB, aggregate-write generates most of the interference,

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

38 Supercomputing Frontiers and Innovations



1 2 4 8 16 32 64 128 256
0

20

40

60

80

100

Chunk size [MiB]

T
h
ro
u
gh
p
u
t
d
ro
p
[%

]

open-write-close
aggregate-write

1 2 4 8 16 32 64 128 256

Chunk size [MiB]

write-seek
aggregate-write

a) GPFS

1 2 4 8 16 32 64 128 256
0

20

40

60

80

100

Chunk size [MiB]

T
h
ro
u
gh
p
u
t
d
ro
p
[%

]

open-write-close
aggregate-write

1 2 4 8 16 32 64 128 256

Chunk size [MiB]

write-seek
aggregate-write

b) Lustre

Figure 6. Effect of chunk size on throughput degradation

again while itself being the least affected one. However, the disparity is not as strong as on GPFS.

As the chunk size is increased to 16 MiB and 256 MiB, respectively, the interference potential of

aggregate-write decreases, whereas that of open-write-close and write-seek increases. At a chunk

size of 256 MiB, write-seek causes most of the throughput reduction, more than 60% for the

other two patterns.

3.3.2. Chunk Size

As chunk size seems to be a crucial parameter for the interference potential of the above

mentioned patterns, we investigated this more closely by running open-write-close and write-

seek against aggregate-write for chunk sizes ranging from 1 MiB to 256 MiB on a logarithmic

scale. The results for GPFS are shown in Fig. 6a. Open-write-close seems to share I/O resources

with aggregate-write more evenly as the chunk size increases, with 256 MiB being the break-even

point. Write-seek shows a similar trend but with the slope shifted to the right. The convergence

here begins when a chunk size of 32 MiB is reached. Beyond this point, the progression is similar

to open-write-close, as I/O resources start to be shared more evenly. At the last data point of

256 MiB, the two patterns break even.

We also studied the sensitivity of interference to chunk sizes on Lustre. The results are

summarized in Fig. 6b. The trend of open-write-close on GPFS, where, at small chunk sizes,

aggregate-write dominates over open-write-close, reappears on Lustre. As the chunk size in-

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 39



open
-write
-close

write
-seek

aggregate
-write

0

20

40

60

80

100

T
h
ro
u
gh
p
u
t
d
ro
p
[%

]

Open-write-close

1MiB 16MiB

open
-write
-close

write
-seek

aggregate
-write

Write-seek

1MiB 16MiB

open
-write
-close

write
-seek

aggregate
-write

Aggregate-write

1MiB 16MiB

a) GPFS

open
-write
-close

write
-seek

aggregate
-write

0

20

40

60

80

100

T
h
ro
u
gh
p
u
t
d
ro
p
[%

]

Open-write-close

1MiB 16MiB

open
-write
-close

write
-seek

aggregate
-write

Write-seek

1MiB 16MiB

open
-write
-close

write
-seek

aggregate
-write

Aggregate-write

1MiB 16MiB

b) Lustre

Figure 7. Throughput drop when the patterns are executed against each other. A higher bar

means less throughput and a higher passive interference. The pattern above each chart represents

the probe, whereas the patterns below the x-axis represent the signal. The signal pattern is

executed in a periodic fashion

creases, open-write-close starts to perform better. The trend culminates at 256 MiB, where

open-write-close and aggregate-write experience the same amount of throughput drop. In the

case of write-seek, aggregate-write dominates at small chunk sizes. However, as the chunk size

is increased, the trend is quickly reversed. Both patterns suffer the same amount of throughput

degradation at 16 MiB, beyond which write-seek starts to dominate aggregate-write.

3.3.3. High Frequency vs. Low Frequency

As the sensitivity to chunk size shows, the trend of interference among the patterns depends

on their specific characteristics. To evaluate this further, we consider the file access frequency of a

pattern. However, covering the whole breadth of possible write access frequencies is prohibitively

expensive. Instead, we expose the unaltered probe to a periodic signal, in which write activity

phases alternate with computational busy-wait phases, mimicking bursty I/O. The period length

of the signal was set to 24 seconds so that multiple consecutive time slices of LWM2 fall in one

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

40 Supercomputing Frontiers and Innovations



64 128 256
0

20

40

60

80

100

Process count

T
h
ro
u
gh
p
u
t
d
ro
p
[%

]

open-write-close aggregate-write

a) GPFS

64 128 256
0

20

40

60

80

100

Process count

T
h
ro
u
gh
p
u
t
d
ro
p
[%

]

open-write-close aggregate-write

b) Lustre

Figure 8. Effect of process count on the passive degradation produced by patterns on GPFS

and Lustre

period. Note that the write activity phases are repeated multiple times in a run. The results of

the experiments are shown in Fig. 7.

Overall, the interference trend, both for GPFS and Lustre, is similar to what was observed

for the sustained activity patterns, but with a lower intensity. Aggregate-write still dominates

over open-write-close and write-seek at a chunk size of 1 MiB. Similarly, at the larger 16 MiB

chunk size, aggregate-write causes a lesser degradation while finding itself being victimized to

a higher degree. On GPFS, at a chunk size of 16 MiB, open-write-close suffers less throughput

degradation against itself and against write-seek. One of the reasons it can be like this is at

lower frequencies and at larger write chunk size, is that the metadata operations cease to be

the I/O bottleneck, while, additionally, the low frequency prevents the write bandwidth of the

system from being saturated. As a result, the performance of open-write-close degrades to a

lesser degree.

3.3.4. Process Count

It has been previously observed that an application with higher process count dominantly

occupies the I/O resources of a system when run against an application with lower process

count [29]. However, does this relationship hold true if the two applications have different file

access patterns? We investigated this by running open-write-close and aggregate-write against

each other with a chunk size of 1 MiB. Because write-seek is similarly dominated by aggregate-

write at this chunk size, we have concentrated our study on open-write-close. For each run, we

executed the open-write-close pattern with 256 processes and the aggregate-write pattern with

64, 128 and 256 processes. The results of the experiments are shown in Fig. 8.

The blue line shows the throughput degradation of open-write-close while the red line shows

the throughput degradation of aggregate-write. For GPFS, we see in Fig. 8a that open-write-

close is degraded severely, even when aggregate-write occupies only one fourth of the space. As

we increase the process count of aggregate-write, open-write-close degrades even more severely.

Figure 8b shows the trend for Lustre, which is similar to that of GPFS, but with a lesser

degradation. Again, we see that open-write-close suffers higher degrees of degradation when run

against aggregate-write, even when aggregate-write is one fourth of the size. The throughput

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 41



open
-write
-close

write
-seek

aggregate
-write

0

20

40

60

80

100

T
h
ro
u
gh
p
u
t
d
ro
p
[%

]

Open-write-close

16MiB 256MiB

open
-write
-close

write
-seek

aggregate
-write

Write-seek

16MiB 256MiB

open
-write
-close

write
-seek

aggregate
-write

Aggregate-write

16MiB 256MiB

a) GPFS

open
-write
-close

write
-seek

aggregate
-write

0

20

40

60

80

100

T
h
ro
u
gh
p
u
t
d
ro
p
[%

]

Open-write-close

16MiB 256MiB

open
-write
-close

write
-seek

aggregate
-write

Write-seek

16MiB 256MiB

open
-write
-close

write
-seek

aggregate
-write

Aggregate-write

16MiB 256MiB

b) Lustre

Figure 9. Throughput drop in MPI shared-file mode when the patterns are executed against

each other. A higher bar means less throughput and higher passive interference. The pattern

above each chart represents the probe, whereas the patterns below the x-axis represent the signal

of open-write-close decreases even further as the process count of aggregate-write increases.

From these experiments we can conclude that, when it comes to sharing I/O resources between

applications, the write-access pattern can play a bigger role than the application process count.

3.3.5. Shared File

Not to ignore this increasingly common mode, we also performed a set of experiments

on shared files. The file was shared in such a way that each process occupied a contiguous

portion of the file. For open-write-close and write-seek, the size of the contiguous portion exactly

matched the chunk size of the benchmark. For the aggregate-write pattern, the contiguous

portion matched the size of the total data written by a process.

Figure 9a shows the interference potentials on GPFS. At a chunk size of 16 MiB, aggregate-

write dominates the other two patterns significantly, while at 256 MiB, even though being still

dominant, it generates comparatively less interference for other patterns. These observations are

similar to the results with one file per process. However, we observed some cases in the pairwise

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

42 Supercomputing Frontiers and Innovations



execution of the patterns, in which one instance would completely dominate over the other

instance, effectively serializing the I/O traffic between the pairs. This near-serialization of the

I/O traffic was observed when running patterns against themselves as well as against different

patterns. Figure 9b presents the results on Lustre, where we observed that aggregate-write

dominates open-write-close at a chunk size of 16 MiB, while becoming slightly dominated by

write-seek itself. At a chunk sizeof 256 MiB, open-write-close and write-seek are evenly interfered

in all the runs but dominate aggregate-write. The behavior of aggregate-write is again consistent

with the one-file-per-process case. Open-write-close, however, is less prone to interference at

larger chunk sizes. Based on these observations, and considering that writing shared files is a

topic of research in its own right with its own characteristic set of access patterns, we believe

that a full coverage of shared files would justify a separate study.

3.3.6. Discussion

From the above results, it is clear that different I/O access patterns show different inter-

ference potential. The chunk size is also an important factor in determining which pattern is

dominant. At smaller chunk sizes, aggregate-write prevails over open-write-close and write-seek,

causing a notable degradation of throughput for the latter two while showing little impact on the

former. However, as the chunk size increases, the balance is shifted in favor of open-write-close

and write-seek. At a certain point, open-write-close and write-seek suffer as much as aggregate

write, beyond which the trend may even become reversed. On GPFS, open-write-close and write-

seek show similar degradation trends, while on Lustre, open-write-close has comparatively less

interference potential. The precise reason for our observations is unclear, but it seems that both

metadata operations including open, close, and seek on the one hand and the number of different

file blocks an application writes make it sensitive for interferention. At least, this would explain

the trend reversal shown in Fig. 6b. As the chunk size, increases together with it the number of

different blocks written by aggregate-write, the density of metadata operations shrinks.

3.4. Applications

After establishing an interference relationship among the access patterns through micro-

benchmarks, we investigated the same effects using realistic applications. First, we verified the

interference trend for micro-benchmarks against applications, and later confirmed it for appli-

cation vs application. In our previous study [6], we considered two typical I/O-intensive HPC

applications, OpenFOAM and MadBench2. Here, we extend the work by also evaluating our

approach with HACCIO, a code-writing large checkpoints, against the micro-benchmarks and

the other two applications. All three together of them provide one realistic use for each of the

three access patterns, as summarized in Tab. 3.

Table 3. Applications and the access pattern they

represent including the chunk size

Application Access pattern Chunk size

OpenFOAM open-write-close a few kilobytes

MADBench2 write-seek 74 MB

HACCIO aggregate-write 386 MB

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 43



open
-write
-close

write
-seek

aggregate
-write

0

20

40

60

80

100

R
u
n
ti
m
e
d
il
at
io
n
[%

]

GPFS Lustre

a) 1 MB

open
-write
-close

write
-seek

aggregate
-write

0

20

40

60

80

100

R
u
n
ti
m
e
d
il
at
io
n
[%

]

GPFS Lustre

b) 2 KB

Figure 10. Throughput degradation of OpenFOAM when run against the patterns at different

chunk sizes

3.4.1. OpenFOAM

OpenFOAM [17], which stands for Open source Field Operation And Manipulation, is a free,

open source computational-fluid-dynamics (CFD) software package developed by OpenCFD Ltd

of ESI Group and distributed by the OpenFOAM Foundation. It was one of the first scientific ap-

plications to leverage C++ for a modular design. The package provides parallel implementations

of a rich set of libraries, from mathematical equation solvers to general physical models. Open-

FOAM uses standard C++ I/O for checkpointing at regular intervals. At each checkpoint, new

files of around a few kilobytes are created and written by every process, making its I/O behavior

similar to the open-write-close pattern. As LWM2’s C++ I/O profiling is still in progress, we

were only able to capture file-close counts for our runs. In our experiments, OpenFOAM closed

more than 14000 files per time slice. As this count is significantly larger than the process count

of the application, it indicates that most of those files were written to and closed in the same

time slice, making the file-close count an indicator of I/O throughput. Similarly, we used the

dilation of execution time, which occurs as a consequence of I/O performance drop, to gauge

the interference potential.

In our experiment, we ran the cavity example from the official tutorial of OpenFOAM

version 2.3.0 using 256 processes. Cavity involves processing of an isothermal, incompressible

flow in a two-dimensional square domain. Specifically, we used the icoFoam solver, in which

the flow is assumed to be laminar. We executed the cavity example in parallel with each of the

three pattern micro-benchmarks. We set the chunk size of the patterns to 1 MiB, the smallest

chunk size we used in our pure micro-benchmark experiments. We executed the runs on both

GPFS and Lustre, and adjusted the runtime of the patterns to fully overlap with OpenFOAM’s

execution.

OpenFOAM experienced degraded I/O performance when executed concurrently with all

the three patterns. The throughput drop caused by each of the patterns is shown in Fig. 10a.

As OpenFOAM’s I/O pattern is similar to open-write-close with a small chunk size, the large

interference potential of aggregate-write at such a small chunk size is immediately visible, leading

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

44 Supercomputing Frontiers and Innovations



0

0.2

0.4

0.6

0.8

1

1.2
·104

F
ile

cl
os
e
co
u
nt

/t
im

e
sl
ic
e
[O
p
en
F
O
A
M
]

5 10 15 20 25
0

0.5

1

1.5

2

2.5

·104

Time slices

F
ile

cl
os
e
co
u
nt

/t
im

e
sl
ic
e
[N
oi
se
]

OpenFOAM Periodic signal

a) OpenFOAM vs. open-write-close

0
0.2
0.4
0.6
0.8
1

1.2
1.4

·104

F
ile

cl
os
e
co
u
nt

/t
im

e
sl
ic
e
[O
p
en
F
O
A
M
]

10 20
0

0.5

1

1.5

2

·1010

Time slices

B
yt
es

w
ri
tt
en

/t
im

e
sl
ic
e
[N
oi
se
]

OpenFOAM Periodic signal

b) OpenFOAM vs. aggregate-write

Figure 11. Time-slice view of OpenFOAM when executed concurrently with two patterns on

GPFS

to more than 80% drop for Lustre and 90% for GPFS. Unlike the micro-benchmark, OpenFoam

also suffered about 80% throughput drop against open-write-close. One reason for this behavior

might be the unequal chunk size of the patterns and OpenFOAM. To verify this, we executed the

patterns at 2 KiB chunk size. The results are shown in Fig. 10b. Aggregate-write still dominates

over OpenFOAM, with a throughput drop of more than 90% for GPFS. Lustre, on the other

hand, shows a slightly reduced drop of 70% in throughput. Open-write-close now degrades

OpenFOAM’s throughput by around 60%, similar to what the micro-benchmark allowed us to

see. The interference of write-seek on Lustre remains at 30% for both chunk sizes. However, it

declines from around 50% for 1 MiB to 10% for 2 KiB on GPFS. Overall, the interference trend

is similar to that of our purely micro-benchmark-based observations.

To further understand the I/O interference dynamics during concurrent execution, we exe-

cuted OpenFOAM against periodic modes of open-write-close and write-seek. In this mode, the

micro-benchmark’s I/O access phases alternate with silence. This periodic mode highlights the

effects of interference during the I/O access phases. Figure 11a and Figure 11b show the time

slice view when OpenFOAM is concurrently executed with open-write-close and aggregate-write,

respectively. Against open-write-close, OpenFOAM’s performance degrades by 60%–70% during

active phases of the pattern in comparison to the silent phases. On the other hand, OpenFOAM

against aggregate-write degrades by up to 95% when the pattern performs I/O accesses. This is

clearly visible, as the file-close rate of OpenFOAM exhibits intermittent behavior under interfer-

ence. Comparing OpenFOAM to our open-write-close micro-benchmark, we see that it suffers in

a similar way when exposed to aggregate-write, that is, its performance degrades significantly.

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 45



open
-write
-close

write
-seek

aggregate
-write

0

20

40

60

80

100

R
u
n
ti
m
e
d
il
at
io
n
[%

]

GPFS Lustre

Figure 12. Throughput degradation of MadBench2 when run against different patterns

3.4.2. MadBench2

MADbench2 is derived from MADCAP cosmic microwave background radiation analysis

software. MADbench2 performs dense-linear-algebra calculation using ScaLAPACK [13]. It has

very large memory demands and its required matrices generally do not fit in the memory. As a

result, the calculated matrices get recorded to a disk and re-read when required. This means that

MadBench2 performs complex I/O operations in four phases. For our experiments, as the scope

of our study is write-write contentions, we concentrate on the first phase, which has only writes

and seeks. The other phases are either reads or a mixture of reads and writes. We henceforth

use MadBench2 to refer to the build with the first phase only.

For the experiments, we setup MadBench2 to use POSIX I/O in the one-file-per-process

mode. To maximize performance, we used the configuration recommended by Borill et al. [34],

which is: WMOD=1, NPIX=50,000, NBIN=36, NGANGS=1, SBBLOCKSIZE=1, FBBLOCK-

SIZE=128. Furthermore, as our focus is on file-access patterns, MadBench2 is configured to run

in I/O mode. In I/O mode, MadBench2 acts as a pure I/O benchmark, replacing computation

with busy-wait cycles. With this configuration, and using 256 processes, MadBench2 writes

670 GB of data, with each process, performing seeks with an offset of about 74 MB during

execution. This makes the I/O behavior similar to the write-seek pattern with a chunk size of

74 MB. For this reason, we executed MadBench2 against the three patterns at a chunk size of

64 MB. The results are shown in Fig. 12.

The throughput degradation on both file systems is quite different for MadBench2. On

GPFS, aggregate-write generates the most interference, reducing the throughput by about 80%.

Similarly, write-seek degrades the throughput of MadBench2 by about 40%. However, in the case

of open-write-close, MadBench2’s runtime improves. For a chunk size of 64 MiB, the higher inter-

ference aggregate-write generates is consistent with our micro-benchmarks results. On Lustre, all

the patterns generate similar interference levels, with aggregate-write degrading the throughput

of MadBench2 slightly less compared to others. The reason is that, for write-seek, the interfer-

ence trend already reverses at a chunk size of 64 MiB, as shown in Fig. 6b. Overall, the passive

interference behavior of MadBench2 resembles that of our write-seek micro-benchmark.

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

46 Supercomputing Frontiers and Innovations



open
-write
-close

write
-seek

aggregate
-write

0

20

40

60

80

100

R
u
n
ti
m
e
d
il
at
io
n
[%

]

GPFS Lustre

a) 1 MB

open
-write
-close

write
-seek

aggregate
-write

0

20

40

60

80

100

R
u
n
ti
m
e
d
il
at
io
n
[%

]

GPFS Lustre

b) 256 MB

Figure 13. Throughput degradation of HACCIO when run against different patterns

3.4.3. HACCIO

HACCIO is an I/O benchmark code derived from a cosmology software framework called

HACC (Hardware Accelerated Cosmology Code). HACC simulates the formation of collisionless

fluids under the influence of gravity using N-body techniques. HACC has very high I/O demands,

where a small simulation can write terabytes of data [7].

HACCIO writes large checkpoint files during its execution. It creates one file per process,

and incrementally writes data to it. During checkpointing, the files are written, read back, and

verified. As our work concentrates on write-write contention, we removed the read-back and

verification part in our experiments. HACCIO can use different I/O modes during execution,

including POSIX I/O, MPI with one-file-per-process or MPI with one or more shared-file.

In our experiments, we ran HACCIO with 256 processes and with POSIX I/O. During

execution, each process wrote 3.6 GiB of data to its file, in chunks of 381 MiB. The I/O behavior

can be equated to the aggregate-write pattern with a chunk size of 381 MiB. We ran HACCIO

against the three patterns with chunk sizes of 1 MiB and 256 MiB, respectively. The results are

shown in Fig. 13.

With 1 MiB, on both GPFS and Lustre, open-write-close and write-seek degrade HAC-

CIO’s performance to a smaller degree than aggregate-write. This trend is consistent with our

micro-benchmark results. In the case of aggregate-write, the degradation that HACCIO suffers

on GPFS is slightly higher than the one on Lustre (60% vs. 40%). In our micro-benchmark ex-

periments for 1 MiB and 16 MiB, we also saw aggregate-write suffering a degradation of around

40% on Lustre and one between 50% and 60% on GPFS. With 256 MiB on Lustre, the degra-

dation caused by write-seek grows to about 60%, while open-write-close and aggregate-write

cause around 50% degradation. This is again similar to what has been observed with micro-

benchmarks. Write-seek dominates aggregate-write at large chunk sizes. On GPFS, open-write-

close degrades HACCIO by less than 10%. On the other hand, write-seek and aggregate-write

cause about 50% degradation of the HACCIO write throughput. Overall, the trend is similar to

our micro-benchmark-based observations.

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 47



3.4.4. Application vs. Application

With our knowledge of how isolated access patterns interfere with realistic applications,

we also investigated the interference between realistic applications, as it can occur in a live

production system. For this purpose, we ran OpenFOAM, MADBench2, and HACCIO first

against themselves and later against each other, always using 256 processes per application.

The results are shown in Fig. 14. In the figure, the x-axis shows the probe applications whose

runtime dilation is reported. For each probe application, we show a separate bar for each signal

application that is causing a degraded performance. In these figures, each application represents

an access pattern; however, each one of them has a different chunk size and access frequency.

Therefore, the interpretation of our results requires consideration of the pattern type, chunk

size, and access frequency.

On GPFS, HACCIO generates the biggest interference of all, with OpenFOAM being de-

graded by more than 90% and MadBench2 by more than 60%. The values are similar to open-

write-close against aggregate-write at a chunk size of 1 MiB and write-seek against aggregate-

write at 256 MiB. MadBench2 degrades OpenFOAM by more than 80% and HACCIO by more

than 10%. Here, MadBench2’s behavior diverges from write-seek, with high degradation for

OpenFOAM and low degradation for HACCIO. A possible explanation for OpenFOAM against

MadBench2 can be the large chunk-size difference, while for HACCIO it can be low access fre-

quency, as was observed for periodic probe signals in Fig. 7a. OpenFOAM against the other

two applications generates a comparatively small throughput degradation. This is similar to our

observation of open-write-close at small chunk sizes.

On Lustre, HACCIO degrades OpenFOAM by about 60%, while being degraded itself by

less than 10%, similar to what was observed with micro-benchmarks. HACCIO degrades Mad-

Bench2 by about 55%, while being degraded itself by about 40%. This is again similar to

micro-benchmark results, where for chunk sizes greater than 16 MiB, write-seek dominates over

aggregate-write. Looking at MadBench2 against OpenFOAM, we see that OpenFOAM’s runtime

is dilated by about 70%. This is because of the large chunk-size difference between OpenFOAM

and MadBench2.

Considering the different access patterns, write chunk sizes, and access frequencies, the

overall results are in line with our observations of synthetic micro-benchmarks.

4. Related Work

Several earlier studies identified typical I/O access patterns of HPC applications. Miller

et al. found I/O to be bursty and cyclic [23]. They also distinguished three access patterns,

namely required I/O, checkpointing, and data staging as the most common I/O types. These

patterns roughly correspond to our aggregate-write, open-write-close, and write-seek patterns,

respectively. However, they were studied to optimize I/O from a single-application perspective,

while we look at their interference potential when executed concurrently.

Byna et al. classified file access patterns to generate I/O-access signatures of applica-

tions [12]. These signatures were then used to improve data prefetching. Shan et al. created

a parameterized I/O benchmark called IOR that can mimic the file access pattern of realis-

tic applications [14]. Lofstead et al. found six common read patterns in the analysis part of

simulation software [37]. The read patterns were used to compare end-to-end performance of

logically contiguous and log-based files. Congiu et al. manually analyzed the I/O behavior of

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

48 Supercomputing Frontiers and Innovations



OpenFoam MadBench2 HACCIO
0

20

40

60

80

100

R
u
nt
im

e
d
ila
ti
on

[%
]

OpenFOAM MadBench2 HACCIO

a) GPFS

OpenFoam MadBench2 HACCIO

OpenFOAM MadBench2 HACCIO

b) Lustre

Figure 14. Throughput degradation when the applications are run against each other

applications to identify their patterns [20]. A framework, transparent to the application, then

translated the knowledge of these patterns into hints to the parallel file system. Lu et al. ana-

lyzed patterns in collective I/O and found that the access pattern of a process can be lost after

aggregation, negatively impacting cache performance [1]. To mitigate this effect, they proposed

a cache-management policy aware of collective I/O. In our work, we evaluate the interference

potential of I/O access patterns in concurrent execution.

Similarly, as part of the SIO initiative, Smirni et al. classified I/O accesses according to their

spatial and temporal patterns [18, 25]. Nieuwejaar et al. classified file accesses with respect to

access size, file size, access frequency, sequentiality, etc. in the CHARISMA project [39]. These

studies are orthogonal to our work and part of the broader field of file-access characterization.

More recent work on the topic includes characterizing read access patterns of applications with

the goal of optimizing reads for subsequent data analysis and visualization [37]. Liu et al. an-

alyzed server-side logs to identify I/O intensive applications and characterize their workloads,

providing recommendation to an I/O-aware scheduler [4]. Our work studies the effects of write

patterns on the I/O performance of other co-scheduled applications.

I/O performance has been the subject of several studies, looking at the performance from

a single application perspective [34], from the file-system perspective [26], and from the overall

system perspective [2, 11]. Further studies considered I/O interference between different jobs,

identifying variability [36], uncovering performance problems with statistical techniques [32],

and mitigating I/O interference through application coordination and scheduling [29]. In this

paper, we analyze how file writes of concurrently running jobs interfere and determine factors

that influence the magnitude of interference. While the application process count is already

known as one of the factors [29], we consider process count in the context of access patterns and

examine the influence of further parameters such as write-chunk size and access frequency on

write performance.

SIOX records I/O accesses at each level of the I/O stack, identifies access patterns, and

characterize the I/O subsystem [27, 38] with the objective of pinpointing I/O bottlenecks. Our

work contributes insights into write performance variation as a result of access patterns and

request sizes.

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 49



Yildiz et al. studied the root cause of inter-application I/O interference in HPC storage

systems by comparing the impact of different factors [19]. They found that bad flow of control

in the I/O path caused interference in most cases. Whereas they looked at I/O interference from

the storage perspective, this paper takes an application-centric view.

Inter-application interference in general has also been subject of several studies. Skinner

et al. identified it as one of the five sources of performance variability [31]. Shah et al. estab-

lished a framework for correlating application performance across job boundaries and found I/O

to be highly susceptible to the overall system load [9]. Bhatele et al. observed communication

performance to be strongly influenced by co-scheduled applications on Hopper, a Cray XE sys-

tem [35]. Finally, Shah et al. developed a framework to estimate the impact of inter-application

interference on the execution time of bulk-synchronous MPI applications [10].

Several tools have been used to profile and monitor I/O performance of applications. Carns

et al. used Darshan to characterize I/O of applications at the system level [15, 16]. Uselton et

al. extended IPM for their statistical study of I/O performance variation [32]. We used LWM2

for our study because of its ability to generate synchronized, segmented profiles that allow the

performance of co-scheduled applications to be precisely correlated [9].

Conclusion

In this study, we analyzed inter-application interference effects caused by the interaction be-

tween various I/O access patterns, classified by their behavior, write chunk size, access frequency,

process count, and sharing mode. Specifically, we found that at small chunk sizes data-intensive

applications may significantly slow down checkpointing-intensive applications, even at smaller

process counts, but not vice versa. In one case, the runtime of a checkpointing-intensive applica-

tion was dilated by a factor of five. But the direction of the interference is continuously reversed

as the chunk size is increased.

Given the shared nature of the majority of parallel file systems, preventing I/O interference

altogether is challenging. As a general strategy to reduce it, one should try to separate I/O traffic

with high interference potential either in space or in time. However, in order to make such a

separation successful, it is important to decide what traffic should be separated. Leveraging

techniques demonstrated now with LWM2, file systems could be extended in the future to

recognize aggressive or sensitive patterns automatically, and dynamically separate them either

in space or in time. For example, traffic to a specific set of files could be (re-)routed to a specific

group of file servers or buffered locally to be written back at a later point in time.

In order to support the future interference-aware file-system designs, we plan to further

extend LWM2 to recognize application I/O access patterns automatically and suggest some

appropriate I/O resource scheduling policies. To this end, we want to take more complicated

patterns, chunk sizes, and I/O frequencies into account with the objective of building a reliable

I/O performance interference model based upon quantifiable application I/O characteristics.

The interference model would also pay attention to higher-level file formats such as NetCDF

and HDF5. Finally, with LWM2’s global time-slice view and the ability to detect interference

through correlation, we also see machine learning techniques as a promising research direction

for the prediction of interference and ultimately for its avoidance.

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

50 Supercomputing Frontiers and Innovations



Acknowledgements

This research was supported by JST, CREST (Research Area: Advanced Core Technologies

for Big Data Integration) Grant No. JPMJCR1303 and the G8 Research Councils Initiative

on Multilateral Research, Interdisciplinary Program on Application Software towards Exascale

Computing for Global Scale Issues. Additional support was provided by the German Research

Foundation (DFG) through the program Performance Engineering for Scientific Software and the

US Department of Energy under Grant No. DE-SC0015524. Finally, we would like to acknowl-

edge the support of Global Scientific Information and Computing Center at Tokyo Institute of

Technology for giving us access to their system.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Lu, Y., Chen, Y., Latham, R., Zhuang, Y.: Revealing applications’ access pattern in collec-

tive I/O for cache management. In: Proceedings of the 28th ACM International Conference

on Supercomputing, ICS, Munich, Germany, June 10-13, 2014. pp. 181–190. ACM (2014),

DOI: 10.1145/2597652.2597686

2. Yu, W., Vetter, J., Oral, H.: Performance characterization and optimization of parallel

I/O on the Cray XT. In: Proceedings of the IEEE International Symposium on Parallel

and Distributed Processing, IPDPS, Miami, FL, USA, April 14-18, 2008. pp. 1–11. IEEE

Computer Society (2008), DOI: 10.1109/IPDPS.2008.4536277

3. IBM: An Introduction to GPFS Version 3.5. http://www-03.ibm.com/systems/

resources/introduction-to-gpfs-3-5.pdf (2014), accessed: 2014-08-11

4. Liu, Y., Gunasekaran, R., Ma, X., Vazhkudai, S.S.: Server-side log data analytics for I/O

workload characterization and coordination on large shared storage systems. In: Proceed-

ings of the International Conference for High Performance Computing, Networking, Storage

and Analysis, SC16, Salt Lake City, UT, USA, November 13-18, 2016. pp. 819–829. IEEE

Computer Society (2016), DOI: 10.1109/SC.2016.69

5. Xie, B., Chase, J., Dillow, D., Drokin, O., Klasky, S., Oral, S., Podhorszki, N.: Characteriz-

ing output bottlenecks in a supercomputer. In: Proceedings of the ACM/IEEE International

Conference on High Performance Computing, Networking, Storage and Analysis, SC’12, Salt

Lake City, UT, USA, November 10-16, 2012. pp. 8:1–8:11. IEEE Computer Society (2012),

DOI: 10.1109/SC.2012.28

6. Kuo, C.S., Shah, A., Nomura, A., Matsouka, S., Wolf, F.: How file access patterns influence

interference among cluster applications. In: Proceedings of the IEEE International Confer-

ence on Cluster Computing, CLUSTER, Madrid, Spain, September 22-26, 2014. pp. 1–8.

IEEE Computer Society (2014), DOI: 10.1109/CLUSTER.2014.6968743

7. Hal Finkel: Cosmic Structure Probes of the Dark Universe(Porting and Tuning HACC

on Mira). https://www.alcf.anl.gov/files/darkuniverseesptechreportwrapped.pdf

(2014), accessed 2014-08-11

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 51

http://dx.doi.org/10.1145/2597652.2597686
http://dx.doi.org/10.1109/IPDPS.2008.4536277
http://www-03.ibm.com/systems/resources/introduction-to-gpfs-3-5.pdf
http://www-03.ibm.com/systems/resources/introduction-to-gpfs-3-5.pdf
http://dx.doi.org/10.1109/SC.2016.69
http://dx.doi.org/10.1109/SC.2012.28
http://dx.doi.org/10.1109/CLUSTER.2014.6968743
https://www.alcf.anl.gov/files/darkuniverseesptechreportwrapped.pdf


8. The National Institute for Computational Sciences: I/O and Lustre Usage. https://www.

nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips (2014), ac-

cessed: 2014-08-11

9. Shah, A., Wolf, F., Zhumatiy, S., Voevodin, V.: Capturing inter-application interference

on clusters. In: Proceedings of the IEEE International Conference on Cluster Computing,

CLUSTER, Indianapolis, IN, USA, September 23-27, 2013. pp. 1–5. IEEE Computer Society

(2013), DOI: 10.1109/CLUSTER.2013.6702665

10. Shah, A., Müller, M.S., Wolf, F.: Estimating the impact of external interference on applica-

tion performance. In: Proceedings of the Euro-Par 2018: Parallel Processing, Turin, Italy,

August 27-31, 2018. Lecture Notes in Computer Science, vol. 11014, pp. 46–58. Springer,

Cham (2018), DOI: 10.1007/978-3-319-96983-1 4

11. Lang, S., Carns, P., Latham, R., Ross, R., Harms, K., Allcock, W.: I/O per-

formance challenges at leadership scale. In: Proceedings of the ACM/IEEE Confer-

ence on High Performance Computing Networking, Storage and Analysis, SC’09, New

York, NY, USA, November 14-20, 2009. pp. 40:1–40:12. IEEE Computer Society (2009),

DOI: 10.1145/1654059.1654100

12. Byna, S., Chen, Y., Sun, X.H., Thakur, R., Gropp, W.: Parallel I/O prefetching us-

ing MPI file caching and I/O signatures. In: Proceedings of the ACM/IEEE Confer-

ence on High Performance Computing Networking, Storage and Analysis, SC’08, Piscat-

away, NJ, USA, November 15-21, 2008. pp. 44:1–44:12. IEEE Computer Society (2008),

DOI: 10.1109/SC.2008.5213604

13. Choi, J., Dongarra, J.J., Pozo, R., Walker, D.W.: ScaLAPACK: a scalable linear algebra

library for distributed memory concurrent computers. In: Proceedings of the IEEE Fourth

Symposium on the Frontiers of Massively Parallel Computation, McLean, VA, USA, October

19-21, 1992. pp. 120–127. IEEE Computer Society (1992), DOI: 10.1109/FMPC.1992.234898

14. Shan, H., Antypas, K., Shalf, J.: Characterizing and predicting the I/O performance of hpc

applications using a parameterized synthetic benchmark. In: Proceedings of the ACM/IEEE

Conference on High Performance Computing Networking, Storage and Analysis, SC’08,

Austin, TX, USA, November 15-21, 2008. pp. 42:1–42:12. IEEE Computer Society (2008),

DOI: 10.1109/SC.2008.5222721

15. Carns, P., Harms, K., Allcock, W., Bacon, C., Lang, S., Latham, R., Ross, R.: Understand-

ing and improving computational science storage access through continuous characterization.

In: Proceedings of the IEEE 27th Symposium on Mass Storage Systems and Technologies,

MSST, Denver, CO, USA, May 23-27, 2011. vol. 1, pp. 1–14. IEEE Computer Society (2011),

DOI: 10.1109/MSST.2011.5937212

16. Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., Riley, K.: 24/7 characterization of

petascale I/O workloads. In: Proceedings of the IEEE International Conference on Cluster

Computing and Workshops, CLUSTER, New Orleans, LA, USA, August 31-September 04,

2009. pp. 1–10. IEEE Computer Society (2009), DOI: 10.1109/CLUSTR.2009.5289150

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

52 Supercomputing Frontiers and Innovations

https://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips
https://www.nics.tennessee.edu/computing-resources/file-systems/io-lustre-tips
http://dx.doi.org/10.1109/CLUSTER.2013.6702665
http://dx.doi.org/10.1007/978-3-319-96983-1_4
http://dx.doi.org/10.1145/1654059.1654100
http://dx.doi.org/10.1109/SC.2008.5213604
http://dx.doi.org/10.1109/FMPC.1992.234898
http://dx.doi.org/10.1109/SC.2008.5222721
http://dx.doi.org/10.1109/MSST.2011.5937212
http://dx.doi.org/10.1109/CLUSTR.2009.5289150


17. Jasak, H., Jemcov, A., Tukovic, Z.: OpenFOAM: a C++ library for complex physics sim-

ulations. In: Proceedings of the International workshop on coupled methods in numerical

dynamics, IUC, Dubrovnik, Croatia, September 19-21, 2007. pp. 1–20 (2007)

18. Smirni, E., Aydt, R., Chien, A., Reed, D.: I/O requirements of scientific applications: an

evolutionary view. In: Proceedings of 5th IEEE International Symposium on High Perfor-

mance Distributed Computing (HPDC’96), Syracuse, NY, USA, August 06-09, 1996. pp.

49–59. IEEE Computer Society (1996), DOI: 10.1109/HPDC.1996.546173

19. Yildiz, O., Dorier, M., Ibrahim, S., Ross, R., Antoniu, G.: On the root causes of cross-

application I/O interference in HPC storage systems. In: Proceedings of the IEEE Inter-

national Parallel and Distributed Processing Symposium, IPDPS, Chicago, IL, USA, May

23-27, 2016. pp. 750–759. IEEE Computer Society (2016), DOI: 10.1109/IPDPS.2016.50

20. Congiu, G., Grawinkel, M., Padua, F., Morse, J., Süß, T., Brinkmann, A.: Mercury: A

transparent guided I/O framework for high performance I/O stacks. In: Proceedings of

the 25th Euromicro International Conference on Parallel, Distributed and Network-based

Processing, PDP’17, St. Petersburg, Russia, March 06-08, 2017. pp. 46–53. IEEE Computer

Society (2017), DOI: 10.1109/PDP.2017.83

21. Kunkel, J., Ludwig, T.: Performance evaluation of the PVFS2 architecture. In: Proceedings

of the 15th EUROMICRO International Conference on Parallel, Distributed and Network-

Based Processing, PDP’07, Washington, DC, USA, February 7-9, 2007. pp. 509–516. IEEE

Computer Society (2007), DOI: 10.1109/PDP.2007.65

22. Dennis, J.M., Edwards, J., Loy, R., Jacob, R., Mirin, A.A., Craig, A.P., Vertenstein, M.: An

application-level parallel I/O library for earth system models. International Journal of High

Performance Computing Applications 26(1), 43–53 (2012), DOI: 10.1177/1094342011428143

23. Miller, E.L., Katz, R.H.: Input/output behavior of supercomputing applications. In: Pro-

ceedings of the 1991 ACM/IEEE Conference on High Performance Computing Networking,

Storage and Analysis, SC’91, Albuquerque, NM, USA, November 18-22, 1991. pp. 567–576.

IEEE Computer Society (1991), DOI: 10.1145/125826.126133

24. Dillow, D.A., Fuller, D., Wang, F., Oral, H.S., Zhang, Z., Hill, J.J., Shipman, G.M.: Lessons

learned in deploying the worlds largest scale Lustre file system. Tech. rep., Oak Ridge

National Laboratory (ORNL); Center for Computational Sciences (2010)

25. Smirni, E., Reed, D.: Workload characterization of input/output intensive parallel applica-

tions. In: Marie, R., Plateau, B., Calzarossa, M., Rubino, G. (eds.) Computer Performance

Evaluation Modelling Techniques and Tools, Lecture Notes in Computer Science, vol. 1245,

pp. 169–180. Springer Berlin Heidelberg (1997), DOI: 10.1007/BFb0022205

26. Kunkel, J., Ludwig, T.: Bottleneck detection in parallel file systems with trace-based perfor-

mance monitoring. In: Luque, E., Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008 – Parallel

Processing, Lecture Notes in Computer Science, vol. 5168, pp. 212–221. Springer Berlin

Heidelberg (2008), DOI: 10.1007/978-3-540-85451-7 23

27. Zimmer, M., Kunkel, J., Ludwig, T.: Towards self-optimization in HPC I/O. In: Kunkel,

J., Ludwig, T., Meuer, H. (eds.) Supercomputing, Lecture Notes in Computer Science, vol.

7905, pp. 422–434. Springer Berlin Heidelberg (2013), DOI: 10.1007/978-3-642-38750-0 32

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 53

http://dx.doi.org/10.1109/HPDC.1996.546173
http://dx.doi.org/10.1109/IPDPS.2016.50
http://dx.doi.org/10.1109/PDP.2017.83
http://dx.doi.org/10.1109/PDP.2007.65
http://dx.doi.org/10.1177/1094342011428143
http://dx.doi.org/10.1145/125826.126133
http://dx.doi.org/10.1007/BFb0022205
http://dx.doi.org/10.1007/978-3-540-85451-7_23
http://dx.doi.org/10.1007/978-3-642-38750-0_32


28. Carter, J., Borrill, J., Oliker, L.: Performance characteristics of a cosmology package on

leading HPC architectures. In: Bougé, L., Prasanna, V. (eds.) High Performance Computing

- HiPC 2004, Lecture Notes in Computer Science, vol. 3296, pp. 176–188. Springer Berlin

Heidelberg (2005), DOI: 10.1007/978-3-540-30474-6 23

29. Dorier, M., Antoniu, G., Ross, R., Kimpe, D., Ibrahim, S.: Calciom: Mitigating I/O in-

terference in hpc systems through cross-application coordination. In: Proceedings of the

International Parallel and Distributed Processing Symposium, IPDPS, Phoenix, AZ, USA,

May 19-23, 2014. IEEE Computer Society (2014), DOI: 10.1109/IPDPS.2014.27

30. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice,

P., Rosner, R., Truran, J.W., Tufo, H.: FLASH: an adaptive mesh hydrodynamics code for

modeling astrophysical thermonuclear flashes. The Astrophysical Journal Supplement Series

131(1), 273 (2000), DOI: 10.1086/317361

31. Skinner, D., Kramer, W.: Understanding the causes of performance variability in HPC

workloads. In: Proceedings of the IEEE International Workload Characterization Sympo-

sium, Austin, TX, USA, October 06-08, 2005. pp. 137–149. IEEE Computer Society (2005),

DOI: 10.1109/IISWC.2005.1526010

32. Uselton, A., Howison, M., Wright, N., Skinner, D., Keen, N., Shalf, J., Karavanic, K., Oliker,

L.: Parallel I/O performance: From events to ensembles. In: Proceedings of the IEEE Inter-

national Symposium on Parallel Distributed Processing, IPDPS, Atlanta, GA, USA, April

19-23, 2010. pp. 1–11. IEEE Computer Society (2010), DOI: 10.1109/IPDPS.2010.5470424

33. Hurrell, J.W., Holland, M., Gent, P., Ghan, S., Kay, J.E., Kushner, P., Lamarque, J.F.,

Large, W., Lawrence, D., Lindsay, K., et al.: The Community Earth System Model: A

Framework for Collaborative Research. Bulletin of the American Meteorological Society

94(9), 1339–1360 (2013), DOI: 10.1175/BAMS-D-12-00121.1

34. Borrill, J., Oliker, L., Shalf, J., Shan, H.: Investigation of leading HPC I/O perfor-

mance using a scientific-application derived benchmark. In: Proceedings of the ACM/IEEE

Conference on High Performance Computing Networking, Storage and Analysis SC’07,

Reno, NV, USA, November 10-16, 2007. pp. 1–12. IEEE Computer Society (2007),

DOI: 10.1145/1362622.1362636

35. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood: per-

formance degradation due to nearby jobs. In: Proceedings of the ACM/IEEE Inter-

national Conference for High Performance Computing, Networking, Storage and Analy-

sis, SC ’13, Denver, CO, USA, November 17-22, 2013. IEEE Computer Society (2013),

DOI: 10.1145/2503210.2503247

36. Lofstead, J., Zheng, F., Liu, Q., Klasky, S., Oldfield, R., Kordenbrock, T., Schwan, K.,

Wolf, M.: Managing variability in the IO performance of petascale storage systems. In:

Proceedings of the ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, SC’10), New Orleans, LA, USA, November 13-19, 2010.

pp. 1–12. IEEE Computer Society (2010), DOI: 10.1109/SC.2010.32

37. Lofstead, J., Polte, M., Gibson, G., Klasky, S., Schwan, K., Oldfield, R., Wolf, M., Liu,

Q.: Six degrees of scientific data: Reading patterns for extreme scale science IO. In:

How File-access Patterns In
uence the Degree of I/O Interference between Cluster...

54 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1007/978-3-540-30474-6_23
http://dx.doi.org/10.1109/IPDPS.2014.27
http://dx.doi.org/10.1086/317361
http://dx.doi.org/10.1109/IISWC.2005.1526010
http://dx.doi.org/10.1109/IPDPS.2010.5470424
http://dx.doi.org/10.1175/BAMS-D-12-00121.1
http://dx.doi.org/10.1145/1362622.1362636
http://dx.doi.org/10.1145/2503210.2503247
http://dx.doi.org/10.1109/SC.2010.32


Proceedings of the 20th International Symposium on High Performance Distributed Com-

puting, HPDC’11, San Jose, California, USA, June 08-11, 2011. pp. 49–60. ACM (2011),

DOI: 10.1145/1996130.1996139

38. Wiedemann, M., Kunkel, J., Zimmer, M., Ludwig, T., Resch, M., Bönisch, T., Wang, X.,

Chut, A., Aguilera, A., Nagel, W., Kluge, M., Mickler, H.: Towards I/O analysis of HPC

systems and a generic architecture to collect access patterns. Computer Science - Research

and Development 28(2-3), 241–251 (2013), DOI: 10.1007/s00450-012-0221-5

39. Nieuwejaar, N., Kotz, D., Purakayastha, A., Ellis, C., Best, M.: File-access characteristics of

parallel scientific workloads. IEEE Transactions on Parallel and Distributed Systems 7(10),

1075–1089 (October 1996), DOI: 10.1109/71.539739

40. Laboratory, E.O.L.B.N.: Global cloud resolving model simulations, ernest orlando lawrence

berkeley national laboratory. http://vis.lbl.gov/Vignettes/Incite19 (2014), accessed:

2014-08-11

A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

2019, Vol. 6, No. 2 55

http://dx.doi.org/10.1145/1996130.1996139
http://dx.doi.org/10.1007/s00450-012-0221-5
http://dx.doi.org/10.1109/71.539739
http://vis.lbl.gov/Vignettes/Incite19

	A. Shah, C. Kuo, A. Nomura, S. Matsuoka, F. Wolf

