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Modern supercomputers consist of multi-core processors, and these processors have recently

employed vector instructions, or so-called SIMD instructions, to improve performances. Numeri-

cal simulations need to be vectorized in order to achieve higher performance on these processors.

Various legacy numerical simulation codes that have been utilized for a long time often contain

two versions of source codes: a non-vectorized version and a vectorized version that is optimized

for old vector supercomputers. It is important to clarify which version is better for modern super-

computers in order to achieve higher performance. In this paper, we evaluate the performances of

a legacy fluid dynamics simulation code called FASTEST on modern supercomputers in order to

provide a guidepost for migrating such codes to modern supercomputers. The solver has a non-

vectorized version and a vectorized version, and the latter uses the hyperplane ordering method

for vectorization. For the evaluation, we also implement the red-black ordering method, which is

another way to vectorize the solver. Then, we examine the performance on NEC SX-ACE, SX-

Aurora TSUBASA, Intel Xeon Gold, and Xeon Phi. The results show that the shortest execution

times are with the red-black ordering method on SX-ACE and SX-Aurora TSUBASA, and with

the non-vectorized version on Xeon Gold and Xeon Phi. Therefore, achieving a higher performance

on multiple modern supercomputers potentially requires maintenance of multiple code versions.

We also show that the red-black ordering method is more promising to achieve high performance

on modern supercomputers.

Keywords: performance evaluation, legacy code, numerical fluid dynamics simulation, vector-

ization, hyperplane method, red-black method.

Introduction

Numerical simulations of fluid dynamics can solve many of the important problems the

scientific and engineering field faces today. Simulations for analyzing and understanding more

complex problems require higher performance supercomputers. Modern supercomputers consist

of multi-core processors such as Intel Xeon and Xeon Phi processors to increase the degree of

parallelism. Moreover, modern supercomputers have employed vector instructions to exploit the

loop-level parallelism. Thus, in order to achieve a higher performance on these processors, it

is necessary to vectorize the simulation codes. In this paper, the supercomputers composed of

processors employing vector instructions are referred to as modern vector machines.

Many numerical simulations of fluid dynamics utilize implicit methods for stably solving

large-scale models. However, the implicit methods generally have loop-carried dependencies on

stencil calculations, and these simulations cannot be vectorized in a straightforward way. The

hyperplane ordering method [1] was devised to vectorize them, and until recently this method

was widely used for vectorizing the implicit methods on vector supercomputers. Accordingly,
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some legacy numerical simulation codes (called old vectorized codes) often have two versions of

source codes: non-vectorized version (called naive version) and vectorized version.

As the hyperplane ordering method generally increases memory loads, Soga et al. [2] uti-

lized the red-black ordering method to vectorize the successive over-relaxation method, and

then demonstrated that both of the vector supercomputer SX-9 system and Intel Xeon proces-

sor (Nehalem-EX) can achieve higher performance by using the red-black ordering method in

comparison with the hyperplane ordering method. Therefore, old vectorized codes may require

another vector optimization (i.e., red-black ordering) to achieve a higher performance on modern

vector machines.

In this paper, we evaluate the performances of the naive version, hyperplane, and red-black

ordering methods on modern vector machines, NEC SX-ACE, SX-Aurora TSUBASA (hereafter:

SX-Aurora), Intel Xeon Gold, and Xeon Phi (Knights Landing), so as to clarify which method

achieves higher performance. Here, the finite-volume solver FASTEST [3] serves as basis for our

evaluation.

In Section 1, we present related work regarding optimization and performance evaluations of

FASTEST. Section 2 explains the system architecture of four modern vector machines. Section 3

provides an overview of the FASTEST code. Section 4 presents the results of performance

evaluations. We conclude in Summary section with a brief summary and mention of future

work.

1. Related Work

FASTEST is a legacy fluid dynamics code and was originally developed in the 1990s. Scheit

and Becker [4] optimized the FASTEST-3D code for multi-core processors and evaluated its

performance on an Intel Xeon eight-cores processor (Sandy Bridge) and six-cores processor

(Westmere). They found that the code was mostly memory-bound and that the solver of Stone’s

strongly implicit (SIP) method [5] was the main performance bottleneck. In order to decrease

the memory load, they used single-precision floating-point data, and avoided unnecessary re-

computation of the incomplete LU factorization to solve the SIP method. This improved the

performance by about 40 %. They also utilized non-blocking MPI functions and showed that the

scalability improved, i.e. the number of nodes of the optimized code was 2.8 times more than

that of the non-optimized code when each parallel efficiency was 50 %.

Burger et al. [6] examined optimizations of memory access on the sipsol subroutine and

found, similarly, that the solver of the SIP method was memory intensive and was the most time-

consuming. In particular, the memory access on the vectorized version of the solver was inefficient

due to memory accesses along a plane, called the hyperplane, which is a skew cutting plane across

the three-dimensional space. The solver needs long-interval accesses. They packed data elements

on a three-dimensional array into two two-dimensional arrays in sequential memory access and

showed that the performance becomes double on an AMD Opteron twelve-cores processor.

These studies utilized an Intel Xeon processor and AMD Opteron along with the AVX

instruction set, which enabled the simulation codes to be vectorized. However, there was no

discussion from a view point of vectorization. Therefore, in this paper, we clarify the performance

on the vectorized FASTEST codes on modern vector machines.
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Table 1. Specifications of each machine used in the

evaluation

SX-ACE SX-Aurora Xeon Gold Xeon Phi

Clock freq. (GHz) 1 1.4 2.6 1.3

CPU No. of cores 4 8 16 64

Perf. (Gflop/s) 256 2150 1331 2662

LLC (MB) - 16 22 32

Memory (GB) 64 48 192 96

(MCDRAM) 16

Mem. BW (GB/s) 256 1200 128 102

(MCDRAM) 409

2. Modern Vector Machines

Modern supercomputers consist of many processors and accelerators employing multi-core

technologies. For example, the world’s fastest supercomputer in the top 500 list in June 2018 [7] is

equipped with 2,397,824 cores and achieved the theoretical peak-performance of 200.8 Pflop/s.

Recently, scalar processors have provided support for vector instruction sets such as Stream-

ing SIMD Extensions (SSE), Advanced Vector Extensions (AVX), and AVX-512 instructions.

Thanks to these vector instructions, numerical simulations have been accelerated not only on

vector supercomputers but also on scalar supercomputers. In this section, we give overviews of

modern vector machines, NEC SX-ACE, SX-Aurora TSUBASA, Intel Xeon Gold, and Xeon

Phi. Table 1 lists the hardware configurations of each machine used in the evaluation.

2.1. SX-ACE

SX-ACE is a vector supercomputer launched by NEC in 2013 [8, 9]. Its processor consists

of four vector cores being comprised of a vector processing unit (VPU), Assignable Data Buffer

(ADB) and Miss Status Handling Register (MSHR). The VPU is a key component of SX-ACE.

The vector length of SX-ACE is 256 vector elements, 8 B each, and VPU can execute 256 oper-

ations by a single vector instruction using 16 vector pipelines in 16 clock cycles. The VPU has

two multiply units and two add units, which can be independently operated by different vector

instructions. Thus the core can simultaneously execute 64 operations by four vector instructions

in one clock cycle. As the clock frequency of the core is 1.0 GHz, the single core performance

of SX-ACE is 64 Gflop/s. The total performance of a single processor reaches 256 Gflop/s with

four cores. Each core is connected to a memory control unit (MCU) through the memory cross-

bar network at the memory bandwidth of 256 GB/s, and the bandwidth is shared by the four

cores. Thanks to this architecture, a single core can use the entire bandwidth of 256 GB/s if

the other three cores do not access the memory. Each core is equipped with 1 MB ADB, which

is a software controllable data buffer with a directory that can be accessed by the VPU at the

rate of 256 GB/s. Unlike caches on general scalar processors, ADB is controlled by manually

inserting directives into the source program. Consequently, ADB can retain only reusable data,

which will not be evicted by non-reusable data. MSHR is used to handle outstanding vector

loads on cache misses by eliminating unnecessary vector load accesses. It can reduce redundant

load requests between ADB and the main memory.
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2.2. SX-Aurora TSUBASA

SX-Aurora TSUBASA was released in 2017 [10, 11]. An SX-Aurora TSUBASA system is

comprised of a vector host (VH) and a vector engine (VE). A VE is implemented as a PCI

Express (PCIe) card equipped with a vector processor, i.e., the card is connected to the VH via

PCIe. One VH can control eight VEs. The vector processor consists of eight vector cores, a 16 MB

last-level cache (LLC), and six High Bandwidth Memory 2 (HBM2) memory modules. The SX-

Aurora TSUBASA’s VPU has three fused multiply add (VFMA) units and each VFMA unit

has 32 vector pipelines. The vector length of SX-Aurora TSUBASA is 256, which is the same as

that of SX-ACE. Thus, a VPU can execute 256 operations by a single vector instruction in eight

clock cycles. As the clock frequency of the VE is 1.4 GHz, a single core provides 268.8 Gflop/s

(32 operations in one clock cycle × two floating-point operations (add and multiply) by VFMA

× 3 VFMA units × 1.4 GHz). Hence, a vector processor, which consists of eight cores, achieves

2.15 Tflop/s. The LLC is directly connected to the vector registers of each core, and shared by

eight cores. The six HBM2 memory modules deliver the high memory bandwidth of 1.288 TB/s

in total. This memory architecture enables a high sustained performance especially in executing

memory-intensive applications.

2.3. Intel Xeon Gold

Intel Xeon Gold is marketed as a 6th-generation Intel core. In this paper, we evaluate the

performance of the application using a Xeon Gold 6142 processor, which consists of 16 cores.

On the previous generations of Intel Xeon processor families, cores, last-level cache (LLC),

memory controller, IO controller, and inter-socket Intel QuickPath Interconnect (Intel QPI)

ports are connected together using a ring architecture. In contrast, the 6-th generation Xeon Gold

processor introduces a mesh architecture that encompasses an array of vertical and horizontal

communication paths. This architecture allows traversal from one core to another through the

shortest path. The processor interconnect is Intel Ultra Path Interconnect (Intel UPI) which

replaced the Intel QPI. Modern scalar processors such as the Xeon Gold processor introduce

SIMD instructions. For example, AVX-512 instructions, which are supported by Xeon Gold,

provide 512-bit-wide vector instructions, 32 logical registers, eight mask registers, and indirect

vector access via gathers and scatters. A single AVX-512 instruction can execute 32 single-

precision or 16 double-precision floating-point operations per cycle. AVX-512 instructions are

classified into five categories: foundation instructions (AVX-512F), which are the base 512-bit

extensions; conflict-detection instructions (AVX-512CD); doubleword and quadword instructions

(AVX-512DQ); byte and word instructions (AVX-512BW); and vector length extensions (AVX-

512VL) [12].

2.4. Intel Xeon Phi

We use the second-generation Intel Xeon Phi 7210, so called Knights Landing (KNL), for

performance evaluation. The processor consists of 32 active physical tiles, and each tile is com-

prised of two cores and two vector processing units (VPU) per core. A 1 MB level-2 (L2) cache

which is shared by two cores is also included in each tile. Multi-channel DRAM (MCDRAM)

and double data rate (DDR) memory are used in the Xeon Phi. The total memory capacities

of MCDRAM and DDR are 16 GB and 96 GB, respectively. MCDRAM, which is 3D-stacked

DRAM integrated on-package, provides high bandwidth of 409 GB/s. The two types of memory
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do k=2,nkblk-1

     lkk=(k-1)*nijblk

     do i=2,niblk-1

          lki=ijksblk+lkk+(i-1)*njblk

          do ijk=lki+2,lki+njblk-1

             res(ijk)=ae(ijk)*fi(ijk+njblk)+aw(ijk)*fi(ijk-njblk)+an(ijk)*fi(ijk+1)+as(ijk)*fi(ijk-1) &

                            +at(ijk)*fi(ijk+nijblk)+ab(ijk)*fi(ijk-nijblk)+su(ijk)-ap(ijk)*fi(ijk)

             rhelp(m)=rhelp(m)+abs(res(ijk))

             res(ijk)=(res(ijk)-bb(ijk)*res(ijk-nijblk)-bw(ijk)*res(ijk-njblk)-bs(ijk)*res(ijk-1))*bp(ijk)

end do; end do; end do

Figure 1. Source code of the naive version

provide three memory modes, which are selectable through the BIOS setting at boot time. One

mode is the cache mode in which MCDRAM is used as a cache for the DDR memory. Another

mode is the flat mode, which handles both MCDRAM and DDR in the same way to organize one

memory space. The other is the hybrid mode, in which either 25 % or 50 % of MCDRAM is used

as cache and the rest is used as memory. In this work, the flat mode is selected for the evalua-

tion. As with Xeon Gold, the Xeon Phi’s VPU also provides support for AVX-512 instructions.

Xeon Phi’s AVX-512 instructions fall into four categories. AVX-512F and AVX-512CD are the

same as those in Xeon Gold. Two additional categories – exponential and reciprocal instructions

(AVX-512ER) and prefetch instructions (AVX-PF) – are only provided by Xeon Phi [13].

3. Incompressible Flow Solver, FASTEST

FASTEST is a three-dimensional incompressible flow solver [6]. Several academic developers

have independently enhanced it to simulate various flow phenomena and multi-physics couplings.

In this paper, we use the code developed at Technische Universität Darmstadt, whose codes are

parallelized by using MPI and OpenMP.

The solver is based on the Semi-Implicit method for the Pressure Linked Equations (SIM-

PLE) method [14], which iteratively solves the momentum and pressure-correction equations.

These equations are discretized using a second-order finite-volume scheme on a block-structured

grid. The resulting linear equation system is solved using the SIP method, which is based on an

incomplete LU factorization. The subroutine containing the SIP method (called sipsol subrou-

tine) is the main performance bottleneck and holds two different implementations [6]. The first,

called the naive version, is shown in Fig. 1. This code calculates the residual calculations after

the LU decomposition in the sipsol subroutine. Each data element in the figure is saved in a

linearized one-dimensional array. All elements are calculated along the three coordinate axes via

a nested loop using variables lkk and lki. The variable lkk indicates the start points of k. Simi-

larly, the variable lki also indicates the start points of i. Here, a loop-carried dependency exists

between the left-hand array res(ijk) and the right-hand arrays res(ijk-nijblk), res(ijk-njblk), and

res(ijk-1) in the second line from the bottom in Fig. 1. Hence, this do loop cannot be vectorized.

The second one, called the HP version, utilizes the hyperplane ordering method. The first do

loop in Fig. 2 converts a triple-nested do loop in Fig. 1 into a single do loop. The second nested

do loop is a loop of the hyperplane. Array ijkdia constructs planes fulfilling the condition i + j +
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do ijk=ijksblk+nijblk+njblk+2,ijksblk+(nkblk-2)*nijblk+njblk*(niblk-2)+njblk-1

   res(ijk)=ae(ijk)*fi(ijk+njblk)+aw(ijk)*fi(ijk-njblk)+an(ijk)*fi(ijk+1)+as(ijk)*fi(ijk-1) &

           +at(ijk)*fi(ijk+nijblk)+ab(ijk)*fi(ijk-nijblk)+su(ijk)-ap(ijk)*fi(ijk)

   rhelp(m)=rhelp(m)+abs(res(ijk))

end do

do ndia=1,numdia(ngr,m)

   do npoi=npsta(ndia,ngr,m)+1,npsta(ndia+1,ngr,m)

   ijk=ijkdia(npoi)

     res(ijk)=(res(ijk)-bb(npoi)*res(ijk-nijblk)-bw(npoi)*res(ijk-njblk)-bs(npoi)*res(ijk-1))*bp(npoi)

end do; end do

Figure 2. Source code of the HP version

i
j

k

Figure 3. Diagram of a hyperplane

k = constant. The plane is a skew cutting plane across the three-dimensional space. The orange

plane in Fig. 3 is one of these hyperplanes that consist of the same color across the grid in three-

dimensional space. Then, the inner do loop calculates the data elements on the planes. Since

this calculation does not have any loop-carried dependency, the code of the sipsol subroutine

is then vectorized. However, the hyperplane ordering method generally increases the number of

memory loads. This is because the memory accesses of array res(ijk) are stride accesses due to

access along the planes, and they have a long access latency. Moreover, the length of loop npoi

is a variable and the efficiency of vectorized calculation becomes low when npoi is small.

We implement the red-black ordering method (called the RB version), the memory loads of

which are lower than those of the hyperplane ordering method, as shown in Fig. 4. However, the

number of iterations required for convergence is generally increased on the red-black ordering

method. Thus there is a performance trade-off with increasing the number of iterations. The do

loop in the second line from the top in Fig. 4 is a switch of Red and Black executions using the

if statement in the fourth line from the top in Fig. 4. Array itbl is a mask table to skip elements

with the color that are not calculated at each iteration, and then the loop is vectorized. This

implementation also increases the number of operations compared to that of the naive version

because the number of iterations generally increases and inserting loop n2 doubles the total

iteration count within the loop nest. Although the if statement is used to skip the computation

in the loop body, SX-ACE executes the computation of both true and false and then the results

are discarded by the so-called masking capability [2]. The benefit of this implementation is to
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do m2=ijkgit(ngr,m)+1,ijkgit(ngr,m)+njblk*niblk*nkblk,iblk

  do n2=1,2

   do ijk=m2,min(m2+iblk-1,ijkgit(ngr,m)+njblk*niblk*nkblk)

      if(itbl(ijk-ijkgit(ngr,m),1,1,n2,m).ne.1) cycle

      res(ijk)=ae(ijk)*fi(ijk+njblk)+aw(ijk)*fi(ijk-njblk)+an(ijk)*fi(ijk+1)+as(ijk)*fi(ijk-1) &

              +at(ijk)*fi(ijk+nijblk)+ab(ijk)*fi(ijk-nijblk)+su(ijk)-ap(ijk)*fi(ijk)

      rhelp(m)=rhelp(m)+abs(res(ijk))

      res(ijk)=(res(ijk)-bb(ijk)*res(ijk-nijblk)-bw(ijk)*res(ijk-njblk)-bs(ijk)*res(ijk+rb_jm1))*bp(ijk)

end do; end do; end do

Figure 4. Source code of the RB version

increase the length of the innermost loop. This code also uses cache blocking to improve the

performance of memory accesses. This is possible because the data loaded at iteration n2=1

(Red) can be reused at iteration n2=2 (Black). Here, the variable iblk is the size of a cache

block.

4. Performance Evaluation

4.1. Experimental Setup

The performance of FASTEST is evaluated by using four modern vector machines: NEC

SX-ACE, SX-Aurora TSUBASA, Intel Xeon Gold, and Xeon Phi. The evaluated codes are the

naive version, the HP version, and the RB version, which are parallelized with OpenMP. Here,

we evaluate performances of a single processor on each machine because the performance per

processor is a key factor to achieve high performance on a large-scale parallel simulation. Then,

since modern HPC applications are usually written with considering the cache memory, we use

the model size of (32×32×53) per processor so that the data potentially fit in the cache memory

of each processor. Here, the maximum degree of parallelism using OpenMP is 16 determined

from the model size. Thus, the code is executed on four cores of SX-ACE, eight cores of SX-

Aurora, 16 cores of Xeon Gold, and 16 cores of Xeon Phi. The memory mode of Xeon Phi is set

to the flat mode.

Table 2 shows the versions and options of each machine’s Fortran compiler. The options

are high-level optimizations and inlining functions and subroutines. The codes are parallelized

by using OpenMP. Table 3 lists the compiler directives for each code on each machine. The

sipsol subroutine is vectorized by using the compiler directives: nodep, ivdep, and simd. SX-

ACE and SX-Aurora use the optimization directives: vovertake, gthreorder, and gather reorder,

which optimize the operation sequences of memory accesses. Here, the codes are executed with

double precision floating-point operations.

4.2. Experimental Results and Discussion

FASTEST iteratively computes the momentum and pressure-correction equations from ini-

tial values of pressure and velocity at each point to their converged values. The number of

iterations varies with optimized and vectorized methods. We measure the execution time of the

sipsol subroutine per iteration, and Figure 5 shows the performance ratios of HP and RB ver-
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Table 2. Versions and options of each compiler

Machine Versions Options

SX-ACE FORTRAN90/SX Rev.534 -Popenmp -Chopt -pi

SX-Aurora NEC Fortran 1.5.1 -fopenmp -O3 -msched-block

-finline-functions

Xeon Gold Intel Fortran 18.0.2.199 -qopenmp -O3 -xCORE-AVX512

-ipo -no-prec-div -fp-model fast=2

Xeon Phi Intel Fortran 18.0.2.199 -qopenmp -O3 -xMIC-AVX512

-ipo -no-prec-div -fp-model fast=2

Table 3. Compiler directives of each code

Machine Naive HP RB

SX-ACE - nodep, vovertake, gthreorder nodep, vovertake

SX-Aurora - ivdep, vovertake, gather reorder ivdep, vovertake

Xeon Gold - ivdep, simd ivdep, simd

Xeon Phi - ivdep, simd ivdep, simd

sions to the naive version (the performance ratio = the execution time of naive version ÷ the

execution time of HP (RB) version). Here, the execution times of the naive version are 0.156

seconds on SX-ACE, 0.053 seconds on SX-Aurora TSUBASA, 0.017 seconds on Xeon Gold,

and 0.039 seconds on Xeon Phi. HP(non-vectorized) and RB(non-vectorized) indicate that the

codes are not vectorized, and hence the performance differences between HP/RB and HP(non-

vectorized)/RB(non-vectorized) indicate the performance gain by vectorization in Xeon Gold

and Xeon Phi.
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with an iteration on each machine
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SX-ACE and SX-Aurora have the same performance characteristics. The vectorized codes,

HP version and RB version, can achieve a higher performance than the naive version. In the

case of SX-Aurora, the HP and RB versions are 5.89 and 13.25 times faster than the naive

version, respectively. In other words, SX-ACE and SX-Aurora cannot achieve high performance

unless codes are vectorized. Meanwhile, although both the HP and RB versions are vectorized,

the performances of the HP version on SX-ACE and SX-Aurora are lower than that of the

RB version, respectively. This is because the HP version needs indirect memory access and its

memory access latency is longer than that of 2-stride memory access used in the RB version.

Moreover, the efficiency of vectorized calculations becomes lower as the length of npoi is small.

Table 4 lists the ratios of stall time of the processor to total execution time on SX-ACE,

SX-Aurora and Xeon Gold. Here, the execution statistics of all the versions on Xeon Phi and

the naive version on SX-ACE and SX-Aurora cannot be measured by performance tools. This

table shows that the stall time of the HP version is larger than that of the others, and then the

HP version is inefficient on these machines.

Table 4. Ratio of stall time of processor

on SX-ACE and Xeon Gold

Naive HP RB

SX-ACE - 76.6 % 56.5 %

SX-Aurora - 72.7 % 67.9 %

Xeon Gold 11.7 % 63.3 % 31.4 %

In Xeon Gold and Xeon Phi, vectorization does not improve the performance of the HP

version. The execution time is almost unchanged by enabling vectorization. In contrast, the

vectorized RB version is 1.78 and 4.66 times faster than its non-vectorized version in Xeon Gold

and Xeon Phi, respectively. Especially, the vectorized RB version on Xeon Phi is faster than the

naive version. Meanwhile, as the clock frequency of Xeon Gold decreases, the performance gain

of Xeon Gold by the vectorization is not high. However, this demonstrates that vectorization is

important to achieve high performance even on Xeon Gold and Xeon Phi processors.

Table 5. Number of iterations on each method

Naive HP RB

Number of iterations 10,004 10,004 17,516

Table 5 shows the number of iterations required by each method for convergence. The RB

version requires 1.8 times more iterations than the naive and HP versions. The total execu-

tion times of the sipsol subroutine increase. Figure 6 shows the performance ratio of HP and

RB versions to naive version (the performance ratio = the execution time of naive version ÷
the execution time of HP (RB) version). Here, the execution times of the naive version are

1565.5 seconds on SX-ACE, 530.8 seconds on SX-Aurora TSUBASA, 171.4 seconds on Xeon

Gold, and 386.0 seconds on Xeon Phi.
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Figure 6. Performance ratio of HP and RB versions to naive version of the sipsol subroutine

with the total execution times on each machine

In SX-ACE and SX-Aurora, the RB version can achieve the shortest execution time, in spite

of an increase in the number of iterations. These results indicate that the red-black method is

suitable to vectorize FASTET for SX-ACE and SX-Aurora. On the other hand, the naive version

achieves the shortest execution time on Xeon Gold and Xeon Phi. These results show that, in

case of the RB version, there is a trade-off between the performance degradation by needing

more iterations and the performance improvement by using vectorization. Therefore, achieving

a higher performance on multiple modern vector machines will require maintenance of multiple

code versions. As a result, it will be more important to consider how to manage the code

complexity in a systematic way in the future. We have been working on this problem [15, 16],

and will further discuss such a methodology in our future work.

Summary

Processors of modern supercomputers have employed vector instructions to exploit loop-

level parallelism efficiently, and the vector lengths are increasing, resulting in increasing the

importance of vectorization to fully exploit the system performance. Various legacy numerical

simulation codes have been vectorized considering old vector machines in mind, and hence the

simulations have two different code versions of their kernel codes: non-vectorized version and

vectorized version. In this paper, we evaluate the performances of such a legacy code called

FASTEST, which is vectorized by the hyperplane and red-black ordering methods, using four

modern vector machines (SX-ACE, SX-Aurora, Xeon Gold, and Xeon Phi) in order to provide

which version is suitable for the modern vector machines.

Experimental results show that the red-black ordering method can achieve the shortest exe-

cution time on SX-ACE and SX-Aurora, while the naive version achieves the shortest execution

time on Xeon Gold and Xeon Phi. This demonstrates that achieving higher performance on

multiple modern vector machines will require maintenance of multiple code versions, namely,

the naive version and the RB version. Overall, these results indicate that the red-black ordering

method has the potential to achieve high performance on the modern vector machine, and that

vectorization is a key optimization method of the modern vector machine.
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In this work, we showed that the maintenance of multiple code versions is required to achieve

higher performance on multiple modern vector machines. We will pursue our methodology of

maintenance of multiple code versions. Moreover, since the number of cores on modern machines

has increased year by year, our future work will investigate performance characteristics of thread-

level parallelism such as OpenMP and OpenACC in order to achieve high performance on legacy

numerical simulation codes.
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