
Autotuning Techniques for Performance-Portable Point Set

Registration in 3D

Piotr Luszczek1, Jakub Kurzak1, Ichitaro Yamazaki1, David Keffer2,

Vasileios Maroulas3, Jack Dongarra1,4,5

c© The Authors 2018. This paper is published with open access at SuperFri.org

We present an autotuning approach applied to exhaustive performance engineering of the

EM-ICP algorithm for the point set registration problem with a known reference. We were able to

achieve progressively higher performance levels through a variety of code transformations and an

automated procedure of generating a large number of implementation variants. Furthermore, we

managed to exploit code patterns that are not common when only attempting manual optimization

but which yielded in our tests better performance for the chosen registration algorithm. Finally, we

also show how we maintained high levels of the performance rate in a portable fashion across a wide

range of hardware platforms including multicore, manycore coprocessors, and accelerators. Each

of these hardware classes is much different from the others and, consequently, cannot reliably be

mastered by a single developer in a short time required to deliver a close-to-optimal implementation.

We assert in our concluding remarks that our methodology as well as the presented tools provide a

valid automation system for software optimization tasks on modern HPC hardware.

Keywords: portable performance engineering, point set registration, autotuning with code generation,

combinatorial optimization.

Introduction

Many aspects of computer vision commonly uses algorithms for registration of point sets in

three-dimensions (3D). But in many areas of science, these methods can be used for analyzing 3D

data arriving from experimental hardware instruments. In particular, this is necessary in order to

produce unambiguous descriptions of atomic-scale structures from large data sets originating in

Atomic Probe Tomography (APT) [15, 19] and multimodal electron microscopy (EM) [14, 24]. In

the study and design of High Entropy Alloys (HEAs), APT can generate data sets that include

from 106 to 107 atoms in a single frame. Work is underway for electron microscopes to relay

time-resolved frames, resulting in an explosion of data that truly puts the analysis of the output

of these analytical techniques of registration squarely within the realm of “big data” analytics.

The ultimate goal, when processing APT data sets, is to be able to resolve both atomic identity

and atom position. The incoming instrument data is in the form of sets of atomic coordinates

(x, y, z) in three-dimensional (3D) space accompanied by identification of the atom type. Such

data is in many ways similar, in its basic form, to visualization tasks but the registration of the

points will be followed by derivation of physics, chemistry, or material science profiles that inform

the scientists of emergent properties of the analyzed samples. This serves as a motivation for fast

and accurate implementations of the registration algorithms that are the subject of this paper.

In order to arrive at novel properties such as resistance to high-temperature, corrosion,

fracture and fatigue [8, 26], large amount of work has been performed to evaluate various

techniques for characterizing local atomic environments [1]. To a significant extent, we follow

here a similar approach and adopt tools from image reconstruction and pattern analysis in the

1Innovative Computing Laboratory, University of Tennessee, Knoxville TN, US
2Department of Materials Science & Engineering, University of Tennessee, Knoxville TN, USA
3Department of Mathematics, University of Tennessee, Knoxville TN, USA
4Oak Ridge National Laboratory, Oak Ridge TN, USA
5School of Computer Science and School of Mathematics, The University of Manchester, Manchester, UK

DOI: 10.14529/jsfi180404

42 Supercomputing Frontiers and Innovations

generic field of machine vision in order to construct detailed atomic structures with highly-

resolved locations from often defective data sets, especially those coming from APT experiments.

Mathematically, of most importance is the minimization of the Frobenius norm: ‖ · ‖F ; computed

for a set of matrices representing the difference between a model reference configuration, m,

denoting the true, average local structure, and the local configuration (data), di, around atom i,

where for an APT experiment, i ranges from 1 to k ≈ 107:

min
Ri,Pi

k∑

i=1

‖m− PidiRi‖2F , (1)

where each configuration has a unique permutation, Pi, and rotation, Ri, matrix (both real and

orthogonal) in order to make it invariant to the arbitrary orientation and numbering generated

by the experimental process.

A formulation of the problem that is based on Bayesian principles is under development and

it explores Markov chain Monte Carlo scheme. A more classic approach is taken here to espouse

benefits of autotuning whereby automation is applied to efficient evaluation of a large variety of

implementation variants. In particular, we use Expectation-Maximization (EM) Iterative Closest

Point (ICP), or EM-ICP for short. EM-ICP is a stochastic method for registration of surfaces. It

improves issues found in other algorithms related to minimizing non-convex cost function. Other

registration algorithms are given in Section 1.

In a simplified yet generic mathematical form, registration of point sets X = {xi|xi ∈ Rd}
and Y = {yi|yi ∈ Rd} may be expressed as:

min
f∈T
‖f(X)− Y ‖, (2)

where the point sets come from a 3D space (rather then a space of arbitrary dimension d):

X = {x1, x2, . . . , x`}, Y = {y1, y2, . . . , ym} with xi, yj ∈ R3 (3)

and the function f , drawn from the eligible set of transformations T , is in our case a simple

linear transform chosen to represent a combination of rotation, scaling, and translation:

f : X 7→ R×X + t ≡ Y (4)

these restrictions result in a transformation that is called rigid registration and is the primary

focus of this manuscript. However, a more general non-rigid registration is possible and it allows

the transformation to be affine. For such a case, it is possible to include anisotropic scaling and

skews. Furthermore, a generalization is possible which allows as input an unknown point set.

This is close to the APT data sets which by their very nature cannot account for all atoms in

the sample. Note also the noise resilience whereby the original formulation is often assumed to

be robust to input measurement errors in the sense that it can handle a distribution of errors

imposed on input data with either outliers or some points missing or both. Again, this caters

directly towards APT-generated point clouds.

A much-simplified overview of the EM-ICP algorithm is depicted in Fig. 1. Starting with the

initial guesses for the components of the transformation as an identity rotation and zero scaling

matrix R(0) and zero translation matrix t(0) which consequently get updated in an iterative

fashion by minimizing Mean Square Error (MSE).

P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra

2018, Vol. 5, No. 4 43

• Step 1: Start with the initial guess of identity rotation and zero translation:

R(0) ← I,

t(0) ← 0

• Step 2: Iterate until convergence:

• Step 2.1: Find closest point

~yi∗ ∈ Y for each ~xi ∈ X

in:

i∗ = arg minj=1,...ny

∥∥∥~xi −R(k−1)~yj + ~t(k−1)
∥∥∥

• Step 2.2: Build the ordered correspondence

Y ∗ = {y1∗, . . . , ynx∗}

• Step 2.3: Find rigid transform such that

min
MSE(X,Y ∗)

{R∗,~t∗}

to minimize overall error

• Step 2.4: Update the current transformation with the newly found one:

Rk ← R∗, ~tk ← ~t∗

Figure 1. Outline of the algorithmic steps of EM-ICP (MSE = mean square error)

The rest of the article is organized as follows. Section 1 is devoted to a short survey of

the related work. In Section 2, we present performance profiles of the implementations of the

registration algorithm under consideration. Section 3 contains detailed performance results on

various hardware platforms. Section 4 discusses in more detail some the important aspects of

the results. The conclusion section summarizes the study and points to potential directions for

further work.

1. Related Work

The algorithm called Iterative Closest Point (ICP) [2, 27] has two important properties:

simple implementation structure and the low levels of computational cost. This characterization

on both counts has resulted over time in increased popularity and both of these aspects have

contributed to proliferation of numerous variants [7, 22] including the one we consider here in more

detail called EM-ICP [10]. The Expectation Maximization (EM) algorithm for Gaussian Mixture

Model (GMM) may be shown [3] to be equivalent to Robust Point Matching (RPM) algorithm [9]

that alternates soft-assignment of correspondences and transformation. Multiple versions of RPM

have been developed [4, 5, 21]. Finally, there is Coherent Point Drift (CPD) algorithm [20] which

performs the so called non-rigid registration while using a suitable regularizer.

Implementations of these methods is the primary focus of the following sections. Reference

codes are available in multiple forms but most often they may be characterized as sequential

Autotuning Techniques for Performance-Portable Point Set Registration in 3D

44 Supercomputing Frontiers and Innovations

Table 1. Performance profile of EM-ICP implementation in

CUDA running on NVIDIA Kepler accelerator

Kernel symbolic name Percentage of time spent

normalize 49%

update 31%

SGEMV 16%

SGEMM 3.0%

SDOT 0.5%

implementations. Parallel counterparts based on OpenMP or explicit multithreading for multicore

processors are rare. Even more so are enhancements for hardware accelerators and we attempt

to breach that gap. For example, some support for ICP is available, in the Point Cloud Library

(PCL) [23] as part of a larger set of methods. Some of these codes may be used as the basis for

our implementations but they require changes for efficiency. Additionally, we perform updates to

make them adhere to the modern software stack [18]. More specifically, we needed to introduce the

current version of CUDA which is better than what is available in the code with CUDA version

5 being the last supported release. Additionally, by adding utilization of the GPU hardware

platforms, we expanded test results. Some implementations6 could potentially be adapted with

cosmetic adjustments to allow them to use more recent versions of CUDA such as version 6.5 but

this is not a guarantee of good performance. In summary, the implementations we generate are

highly customized and target the most recent versions available and supported by NVIDIA: 7.5

and 8.0 with initial work towards compatibility with even newer releases of CUDA 9.0 and 10.0.

Unfortunately, these latest versions of CUDA were not widely available to the public during the

initial test runs.

2. Analysis of Bottlenecks based on Code Profiling

Our survey of existing codes for EM-ICP revealed that the freely available implementations7

focus on visualization tasks and image processing workflows that are often optional in case of

scientific instruments. Our focus is to provide very high ingest rates of the data coming from the

hardware sensors. Our goal is to automatically derive an implementation that is able to process

them in time before the long-term storage system becomes overwhelmed. Based on a survey of

available solutions, we concluded that their support for High Performance Computing (HPC)

techniques is poor and we faced the choice of retrofitting the codes for multithreading, modern

accelerator libraries, and performance profiling or write our own version from scratch. We chose

the former and used this updated code as a reference point that we optimized on a variety of

modern HPC platforms.

As the first step in the performance engineering, we acquired an application profile and

identified the bottleneck portions of the code that may then be targeted with our autotuning

methodology in order to maximize the potential speedup benefits. Table 1 shows a typical

performance profile on one of the tested devices. It is representative of the time breakdown that

6One such implementation is ICPCUDA available at https://github.com/mp3guy/ICPCUDA.
7We did not consider commercial implementations for this study but only the codes that can be obtained under

open source or educational license.

P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra

2018, Vol. 5, No. 4 45

Table 2. Autotuning parameter space used for optimization

of performance through OpenMP parallelization and

directives

Parameter Possible values

Compiler: GNU gcc, Intel icc

Threading runtime: GNU gomp, Intel iomp

Number of threads: 1, . . . , 40, . . . , 70, . . .

Speculation code and hinting: yes, no

Hyper-threading: yes, no

enabled with OpenMP or kernel affinity of threads

Thread affinity: compact, spread, round-robin

Main memory page mapping: round-robin, application-specific

(first touch, randomized, . . .)

Software-exposed parallelism: collapse(2), collapse(3), . . .

Thread scheduling selection: static, chunk-based, dynamic, . . .

Parallel grain selection (chunk size): 1, 2, 3, . . .

Vectorization length: 2, 4, 8, 16

we observed on the other machines used in tests. Note that this represents less computationally-

intensive variant of the ICP method than has been reported by approaches that used Singular

Value Decomposition (SVD) at each iteration [6]. The codes for point set registration require

32-bit floating-point arithmetic for computation and hence most of the code uses single-precision

float data types and the profile from the figure uses that precision and changes to this will

be explicitly noted. Also, the experimental hardware such as APT generates data that can be

accurately represented in 32-bit floating-point digits.

The common technique for efficient implementations is to off-load the compute-intensive

parts of the code to highly tuned numerical libraries. In the case of results from Tab. 1, the calls

to NVIDIA CUBLAS make optimal use of the compute units (SGEMM) and the available memory

bandwidth (SGEMV and SDOT). Unfortunately, once these sections of the code achieve the state

close to hardware-optimal performance, the other parts of the code become the main sources of

slowdown. These two slowdown parts are named update and normalize. In terms of the operations

from algorithm in Fig. 1, they represent updates and normalization of the correspondence and

error metrics throughout the iterations. Focusing on these two portions exclusively targets nearly

90% of the execution time across our tested hardware.

Once we identified the code sections that are important for performance engineering, we pro-

ceeded with defining the parameter space of available configurations that need to be explored for

generating code that would execute efficiently. Table 2 shows a summary of that space for multicore

hardware (GPU-specific considerations are presented below) with open source8 and commercially

developed9 software stack. The search space for autotuning optimization is multidimensional and

heterogeneous in the sense that it includes different categories of parameters, namely: binary

8Due to the fact that the GNU and LLVM compilers share the OpenMP runtime, we only considered GNU gomp

but a LLVM-specific solution is under development.
9We only considered one commercial compiler but other choices are also possible, for example the PGI Group or

Microsoft Visual Studio compilers that support a version of the OpenMP standard.

Autotuning Techniques for Performance-Portable Point Set Registration in 3D

46 Supercomputing Frontiers and Innovations

compiler = ("gcc", "icc")

runtime = ("gomp", "iomp")

omp num threads = range(1, 75)

speculation = (False, True)

hyper threading = (False, True)

kmp affinity = ("disabled", "compact", "scatter")

gomp cpu affinity = ("1-75:1", "1-75:2", "1-75:3", "1-75:4")

omp palces = ("none","threads","cores", "sockets")

omp proc bind = ("close", "master", "spread","none")

memory affinity = ("round robin", "random", "first touch")

collapse = (1, 2, 3)

schedule = ("default", "static", "chunk", "dynamic")

schedule size = range(0, 64+1)

simd length = (2, 4, 8, 16, 32)

Figure 2. Definition of the autotuning space for multicore and manycore CPUs

values (for example use, hyperthreading or not use it), ordinal/categorical/enumeration values

(for example, compiler-version pairs: gcc 6.0, gcc 7.0, icc 2016, icc 2017), integer values (for

example, an integer range of loop blocking parameter values), and continuous variables (for

example, cache reuse ratio). Theoretically, the entire search space may be represented by a

Cartesian product of these variables which would result in combinatorial explosion in the size of

the search space. In practice, the search space is much less regular due to a number of software

and hardware constraints. Some examples include:

• The problem to be optimized might be solved for the GNU compiler but is an issue for the

Intel compiler due to unknown internal issues.

• The output results might be changing depending on the version of the compiler: of-

ten a newer version produces binaries whose results are an improvement but sometimes

performance regressions may also occur.

• The interactions that are internal to the compiler, its OpenMP runtime implementation,

OS version, and finally the processor firmware could further complicate the produce

optimization results.

We have developed Domain Specific Language (DSL) to assist the autotuning processes. It

is called LANAI (LANguage for Autotuning Infrastructure) [16]. It deals primarily with the

definition of search space for optimal implementation. While further details certainly go beyond

the current scope, for completeness, we feel compelled to include some information how the

symbolic description of the parametric space from Tab. 2 translates into a LANAI description that

we present in Fig. 2. Due to the way we presented the search space constraints in the table, the

code from the figure may be considered self-explanatory. However, the full complexity of LANAI

is beyond the scope of this manuscript and includes parsing of the autotuning specification

(ranges, constraints, and their mutual dependence), multiple stages of optimization that reduce

the autotuning time, and code generation that allows search space exploration to take place at

the speed of a native code without the need to ever write such a code by hand.

2.1. Optimizations specific to NVIDIA GPUs and CUDA Software Stack

So far, we discussed the autotuning optimization space with the focus on multicore hardware

that may be, in a generic form, characterized by multipurpose compute cores with a deep memory

hierarchy of caches and complex main memory structures. Hardware accelerators such as compute-

oriented GPUs differ from multicore hardware in a number of important ways including higher

number of floating-point units, higher bandwidth to/from the main memory, and higher latency

P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra

2018, Vol. 5, No. 4 47

Table 3. Optimization space for a single kernel based on

CUDA parallelization features

Parameter description Possible values

Read coalescing for input points X Yes / No

Write coalescing for output points Y Yes / No

Thread grid shape Gi×j i, j ∈ {1, . . . , 1024}
Thread block shape TR×C R,C ∈ {1, . . . , 1024}
Amount of Shared Memory used {0, 210, 211, . . . , 216}
SM or SMX streaming unit utilization {1, 2, . . . , 80}
(number of CUDA streams)

Active threads per thread {8, 16, 32}
Data affinity for grid-block: Gi×j × TR×C → RX×Y row/column-wise, mixed

Floating-point precision 16-bit, 32-bit, 64-bit

Verification criteria Allowed values

GPU occupancy‡ 30%÷ 95%

‡ NVIDIA provides occupancy calculator for users. Good performance is not necessarily equivalent

to good occupancy but there exist occupancy thresholds that are almost always well correlated

with achieving sufficiently high levels of performance based on a relevant metric (bandwidth or

compute intensity).

coalesce input = (True, False)

coalesce output = (True, False)

grid x = range(1, 1024+1)

grid y = range(1, 1024+1)

block x = range(1, 1024+1)

block y = range(1, 1024+1)

shared memory = range(0, 2**16+1, 2**10)

BLK = (8, 16, 32)

precision = (16, 32, 64)

Figure 3. Definition of the autotuning space for GPUs

to the main memory. The memory hierarchy of GPUs is shallower and often features smaller

caches that are shared on a per-device basis. Despite these differences, the breakdown of execution

time from Tab. 1 is generally applicable to both types of compute platforms. Furthermore, this

similarity applies across multiple GPU devices and compiler tool chains which might feature, for

example, different approaches to instruction predication and branch removal algorithms. Such

details depend on availability of Special Function Units (SFUs) on the target device and the

hardware’s predication window length. As a practical example, consider the difference between

NVIDIA’s Kepler and Maxwell architectures: the former features a high end compute cards and

has full support for 64-bit precision floating point arithmetic while the latter only targets gaming

and rending markets with 32-fold slowdown of 64-bit instructions.

The profiling on the NVIDIA hardware is done through either the nvprof command line tool

or the nvvp GUI application. They are assisted by the hardware counters for minimal overhead

on the running code. They were used to gather the profile and bottleneck information from the

reference code.

Autotuning Techniques for Performance-Portable Point Set Registration in 3D

48 Supercomputing Frontiers and Innovations

To maximize the bandwidth achieved by our implementation, we aim at efficient use of

global and shared memory banks as well as enforcement of coalesced reads through stride-1

accesses. This is done explicitly since the GPU compilers often do not automatically handle

Instruction-Level Parallelism (ILP). Also by design, CUDA shifts the burden of exposing the

Thread-Level Parallelism (TLP) to the user as the threads must be explicitly created and managed

by the user code inside kernel functions. These considerations result in a modified search space

for the GPU-optimized autotuning that is shown in Tab. 3.

As was the case for CPUs, Tab. 3 may be translated almost directly into LANAI specification

shown in Fig. 3. There is a number of important issues worth noting. Because the grid and

block dimensions are specified independently, for some combinations of dimensions the thread

counts will exceed what’s allowed on the GPU hardware. This may be counteracted with the

LANAI’s so called constraint or it may be left to the CUDA compiler and runtime: one of them

will indicate insufficient resources for launching a kernel. Clearly, the former solution is preferred

because it limits the overall size of the search space and consequently speeds up the autotuning

process. On the other hand, GPU occupancy is much more vague criteria to meet as it needs

to be calculated in a more complicated way and, additionally, it never had a very well-defined

relation with achieved performance across a wide range of codes [25]. Nevertheless, it can still be

used in the optimization process to either prune the search space or terminate the performance

tests early when they fail to meet a predetermined occupancy requirement.

2.2. Using Limited Precision Arithmetic

2.2.1. Hardware Landscape for 16-bit Floating-Point

A new type of hardware extension for 16-bit floating-point precision arithmetic (FP16) has

become much more main stream in the past few years. Initial experiments in deep network

training with limited floating-point accuracy [11, 12] validated this for machine learning methods.

Since then, a numerous hardware vendors and supercomputing sites have been involved with the

trend that links computational Artificial Intelligence and HPC. Consider the announced AMD

GPUs MI5, MI8, MI25 whose model number corresponds to the peak performance of the card in

FP16: 5 Tflop/s, 8 Tflop/s, and 25 Tflop/s, respectively. Softbank’s subsidiary ARM, announced

publicly an extension to its NEON Vector Floating Point (VFP) to include FP16 in the V8.2-A

architecture specification. NVIDIA GPUs that feature FP16 are widely available starting with

Tegra TX1 and Pascal P100 cards. NVIDIA’s Volta-based V100 and DG100 and the Xavier

car platform feature further extensions of the FP16 support. TSUBAME 3 is one of the first

supercomputers to prominently feature FP16 but other sites with NVIDIA Pascal hardware can

fully utilize this new functionality. This is in line with our experiments in using FP16 in HPC

benchmarking [17]. The ISO C++ standard is slated to add short float primitive data type that

will likely be also added the C standard document following the IEEE 754-2018 specification and

current support of Float16 primitive data type.

2.2.2. FP16 Considerations for Point Set Registration

FP16 precision is officially defined by the IEEE 754-2008 standard. Its features are compared

with the other floating-point precisions in Tab. 4. Note that FP16 was not meant as a format for

compute but as a storage-only representation. This was reflected, among others, by the choice of

the execution semantics of the Tensor Core unit in NVIDIA’s Volta architecture that internally

P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra

2018, Vol. 5, No. 4 49

Table 4. FP16 and Its Hardware Support IEEE 754 (2008)

Precision Width Exponent Mantissa Epsilon Max

Quadruple 128 15 112 O(10−34) O(104932)

Extended 80 15 64 O(10−19) O(10308)

Double 64 11 52 O(10−16) O(10308)

Single 32 8 23 O(10−7) O(1038)

Half† 16 5 10 O(10−3) 65504

† defined only for storage

Table 5. Summary of hardware platforms used in the

performance tests

Architecture Manufacturer Model Name

Xeon x86 Intel 2620 Haswell

Xeon Phi Intel 7280 Knights Landing

Tesla K40c NVIDIA GK110B Kepler

Tesla P100 NVIDIA GP100 Pascal

compute in FP32 arithmetic but consume FP16 operands. This is similar to the common practice

of the way the Fused-Multiply-Add (FMA) instruction is implemented with higher precision for

the intermediate results.

From the perspective of point set registration, FP16 has a potential benefit of increased

bandwidth and vastly improved compute intensity. The former affords a 2-fold increase on the

NVIDIA Pascal cards. The primary consideration is the limited range of the FP16 values as

shown in Tab. 4. At the basic algorithmic level, the use of limited precision in most calculations

may serve as a opportunistic regularization scheme which, among other things, could prevent

overfitting the model to noisy input data as is the case in some scenarios.

3. Performance Results

3.1. Description of the Tested Hardware Platforms

Our autotuning experiments were performed on a number of hardware platforms including

multicore, manycore, and GPU accelerators. A quick summary of these machines is given in Tab. 5.

Out of the computers shown in the table, Intel Phi KNL could potentially be the newest and

might be the least familiar to the reader. As an alternative to the superscalar x86, it represents

a new architecture10 from Intel that is solely based on low-power Atom Silvermont cores with

the maximum of 72 cores in a chip connected with a mesh interconnect and divided logically

into 4 so called quadrants with NUMA-like characteristics as far as data affinity is concerned.

However, further details on cache and memory hierarchy with on-chip specification is out of scope

of this article. Initially planned for two major hardware versions as either self-boot (self-hosted)

or leveraged-boot (accelerator) units. Currently, only self-boot units are commercially available.

10Note that for the most part Xeon and Xeon Phi processors are binary compatible with the exception of the

extra AVX512 instructions which made x86 debut in Intel Xeon Skylake Silver, Gold, and Platinum.

Autotuning Techniques for Performance-Portable Point Set Registration in 3D

50 Supercomputing Frontiers and Innovations

Table 6. Detail characteristics of the Intel Xeon Phi

Knights Landing platform a manycore CPU used in the

tests with the performance numbers coming from hardware

specification or the vendor testing

Specification or Metric name Peak or measured value

Core count 68

Hardware thread count 272

Vector FPUs length 512 bits

Main memory RAM DDR4

Max DDR4 RAM 384 GiB

DDR4 latency ≈140 ns

Fast RAM 16 GiB MCDRAM

Max MCDRAM 16 GiB

MCDRAM latency ≈170 ns

MCDRAM configuration modes flat, cached, mixed

Level 3 cache 0

Peak FP32 6093 Gflop/s†
SGEMM 4065 Gflop/s

Peak FP64 3046 Gflop/s‡
DGEMM 2070 Gflop/s

LINPACK Benchmark 2000 Gflop/s

STREAM MCDRAM 490 GB/s

STREAM DDR4 90 GB/s

† 68 × 1.4 GHz × 2 VPUs × FMA × 16 AVX lanes

‡ 68 × 1.4 GHz × 2 VPUs × FMA × 8 AVX lanes

The relevant details on the Intel Xeon Knights Landing (KNL) machine are given in Tab. 6 as

they are available from public sources.

3.2. Application-Specific Performance Metric for Cross-Platform

Comparisons: Derivation of the Performance Rate

We would like first prepare to for a more exhaustive comparison across both multiple

hardware platforms and a wide range of input data sizes. We recognize the importance of using

absolute timing for measuring performance. Here it would quickly become problematic if used

in isolation. Time-to-solution is, by many accounts, a widely used metric relevant to the end

user but we would also like to be able to attempt comparisons in a much more applicable

fashion when there are many parameters that are not constant across the tested hardware and

the input data sets. At the same time, we want our new metric to be close or even equivalent

to the time-to-solution measurement as long as the data size remains constant. The common

performance metric commonly used in HPC codes is Gflop/s which has important advantage

that it is one metric to use across all input data sets and even applications. However, among

many downsides is the fact that Gflop/s rating assumes that there is uniform (preferably linear)

relationship between Gflop/s and the essential application speed (commonly time-to-solution).

This particular downside results in multiple negative consequences such as artificial efforts to

P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra

2018, Vol. 5, No. 4 51

maximize the number of floating-point instructions that often come free as long as they are

executed on data residing in Level 1 cache. Unfortunately, such operations contribute very little

to the applications’ ultimate goal that need faster execution for large memory footprints that do

not fit in any cache level all at once. Instead, we derive an application-relevant metric based on

the asymptotic performance theory [13].

For registration problems in particular, the performance metric we choose as relevant is the

number of points in the cloud registered per second. Using this provides with a rate and we

can quickly compare either images, scenes or surfaces that contain different number of points.

Simultaneously, we are still able to map the rating back to time-to-solution when we know the

exact point-count. We use Giga-points-per-second (Gpts) as the unit for the execution rate that

is defined as:

r =
t

nXnY
10−9 Gpts,

where nX and nY represent the number of the input and output points, respectively. The scaling

factor of 10−9 is a standard SI prefix that allows all of the rates measured in this article to fall

within the range of small numbers that are less than 50 that are familiar and human readable.

The charts in the right of Fig. 4, Fig. 5, and Fig. 6 show this new metric applied to the timing

charts shown in the left of the respective figures. As an added advantage, we are able to see

subtleties of the optimal configurations. It turns out that in Fig. 5 the asymptotic performance

rate is nearly 6 Gpts but the cache effects may be observe all the way until point clouds of size

5000 points when the working set fits in highest levels of the cache hierarchy and the performance

rate is higher due to the much higher cache bandwidth and lower access latency of fetch image

data.

Finally, rather than presenting a speedup, we only show all the performance results of all

tested configurations without specifying the reference and most optimal ones. This enables the

reader to see the range of results that may be observed in practice. Due to the automated way

of obtaining the results, we can guarantee minimal human intervention while obtaining a fast

implementation.

3.3. Timing and Performance Rate Results for GNU and Intel Compilers on

the x86 Machine

In the first set of results, which are coming from the Intel x86 Haswell machine, we present

ability of the GNU and Intel compilers to generate optimized code and it is shown in Fig. 4 and

Fig. 5, respectively. To limit the total number of points present in the chart, we only included

the most representative configurations and others are not shown. Specifically, the orig-no-omp

configuration is treated as the reference measurement that may be considered sequential because

the OpenMP parallelization was disabled for that run. Inclusion of this configuration in the

charts allows us to show how the GCC compiler struggles to parallelize the registration loop

nest as almost all other parallel configurations run generally at the same speed except for only

one that is marked opt-omp-noif-collapse. Finally, that last configuration may be seen as clearly

outperforming all the others because it enables far greater levels of parallelism and enables

optimization as well better cross-thread work assignment for the GNU compiler. Regrettably,

none of the optimizations tested allowed the GNU compiler to dip below 1 second running time

for the largest point cloud size (40000 points). The Intel compiler had no such problem and ran

under one second for quite a few optimization configurations. Regarding the weak results from

Autotuning Techniques for Performance-Portable Point Set Registration in 3D

52 Supercomputing Frontiers and Innovations

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0

5

10

15

20

25

Ti
m

e
[s

]
GNU C/C++ compiler version 5.3

orig_omp
orig_no_omp
opt_noif
opt_no_omp_noif
opt_omp_noif_collapse
no_opt_strided

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Gi
ga

 p
oi

nt
s p

er
 se

co
nd

GNU C/C++ compiler version 5.3

orig_omp
orig_no_omp
opt_noif
opt_no_omp_noif
opt_omp_noif_collapse
no_opt_strided

Figure 4. Point set registration timing and performance results on the x86 Haswell machine with

the GNU compiler for various OpenMP configurations and the colors on left and right charts

represent the same configurations

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0

1

2

3

4

5

6

7

Ti
m

e
[s

]

Intel C/C++ compiler
orig_omp
orig_no_omp
opt_noif
opt_no_omp_noif
opt_omp_noif_collapse
no_opt_strided

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0

2

4

6

8

10

12

Gi
ga

 p
oi

nt
s p

er
 se

co
nd

Intel C/C++ compiler
orig_omp
orig_no_omp
opt_noif
opt_no_omp_noif
opt_omp_noif_collapse
no_opt_strided

Figure 5. Point set registration timing and performance results on the x86 Haswell machine with

the Intel compiler for various OpenMP configurations and the colors on left and right charts

represent the same configurations

the GNU compiler, we did not conduct any further experiments to understand whether this may

be related to either the generated instruction mix or more efficient OpenMP runtime. We leave

this and other questions of such sort for future work based on similar hardware and software

stacks. Also, we will no longer present GNU compiler results due to low observed performance. A

detailed analysis of the instruction stream generated by GNU and Intel compilers is beyond the

scope of this manuscript and we only attempted to use for both compilers similar flags including

highest possible optimization level and relaxed floating point model to make aggressive code

generation possible.

3.4. Timing and Performance Rate Results on Many-core KNL System and

GPU Device Cards

Figure 6 presents the timing and performance rate results on the Intel Xeon Phi KNL

machine. Two clear differences may be observed when comparing against x86 results:

• the cache effects are mostly not present for the point clouds with small data sizes as

compared to all other x86 runs (originating either from GNU or Intel), also

P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra

2018, Vol. 5, No. 4 53

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0

5

10

15

20

25

30

35

Ti
m

e
[s

]
Intel C/C++ compiler

orig_omp
orig_no_omp
opt_noif
opt_no_omp_noif
opt_omp_noif_collapse
no_opt_strided

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0

2

4

6

8

10

Gi
ga

 p
oi

nt
s p

er
 se

co
nd

Intel C/C++ compiler

orig_omp
orig_no_omp
opt_noif
opt_no_omp_noif
opt_omp_noif_collapse
no_opt_strided

Figure 6. Point set registration timing and performance results on the Xeon Phi Knights Landing

machine with the Intel compiler for various OpenMP configurations and the colors on left and

right charts represent the same configurations

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0

10

20

30

40

Gi
ga

 p
oi

nt
s p

er
 se

co
nd

All runs combined

Figure 7. Point set registration performance rate results on the NVIDIA Pascal P100 card with

the NVIDIA nvcc compiler for all loop blocking configurations and these results are shown for

reference only to give the reader an idea of how many runs were performed, how they cluster,

and range across point cloud sizes

• the variability of timing measurements is not present on KNL and the graphs are much

more smooth especially for the data sizes when the working set exceeds the cache size and

the data has to be streamed from the main memory. This may be attributed to the short

speculative execution window in the KNL’s execution unit design.

First, Fig. 7 shows all data points collected from running on the P100 card in FP32. Clearly

presented in that manner, it is hard to discern specific properties that contributed to the achieved

performance levels. We do so in the analysis that follows by taking into account the various

hardware features that are specific to GPUs and how they affect the performance of various

point set registration implementations.

In Fig. 8, we show our first attempt at more guided measurement of performance on the

NVIDIA Kepler K40c GPU which has a feature of not using coalesced reads from the main

Autotuning Techniques for Performance-Portable Point Set Registration in 3D

54 Supercomputing Frontiers and Innovations

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0

1

2

3

4

5

6

7

8

Gi
ga

 p
oi

nt
s p

er
 se

co
nd

BLK=2.0
BLK=4.0
BLK=6.0
BLK=8.0
BLK=10.0
BLK=12.0
BLK=14.0
BLK=16.0
BLK=18.0
BLK=20.0
BLK=22.0
BLK=24.0
BLK=26.0
BLK=28.0
BLK=30.0
BLK=32.0

Figure 8. Point set registration performance rate results on the NVIDIA Kepler K40c card with

the NVIDIA nvcc compiler for various loop blocking configurations with non-coalesced reads

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0

2

4

6

8

10

12

14

Gi
ga

 p
oi

nt
s p

er
 se

co
nd

BLK=2.0
BLK=4.0
BLK=6.0
BLK=8.0
BLK=10.0
BLK=12.0
BLK=14.0
BLK=16.0
BLK=18.0
BLK=20.0
BLK=22.0
BLK=24.0
BLK=26.0
BLK=28.0
BLK=30.0
BLK=32.0

Figure 9. Point set registration performance rate results on the NVIDIA Kepler K40c card with

the NVIDIA nvcc compiler for various loop blocking configurations with coalesced reads

memory. This clearly goes against the common optimization guidance that is taught to GPU

novice users. To show the effect of the problem and how it helps to fix it, Fig. 9 shows the

configuration when the coalescent reads were used. The performance increase is nearly 2-fold

which confirms the importance of this optimization for the registration code and for our tested

implementations.

An arguably more counter-intuitive result occurs when we forgo the use of the shared memory

which is a user-controlled scratchpad cache. This special buffer is often used for complex memory

patterns which on occasion lead to very high performance improvements. To a limited extent, this

may be observed for the tested registration algorithm and we evaluated it for our implementations

to find out if it happened to be the case for our tests. Figure 10 presents the results to show that

P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra

2018, Vol. 5, No. 4 55

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0

2

4

6

8

10

12

14

16

Gi
ga

 p
oi

nt
s p

er
 se

co
nd

BLK=2.0
BLK=4.0
BLK=6.0
BLK=8.0
BLK=10.0
BLK=12.0
BLK=14.0
BLK=16.0
BLK=18.0
BLK=20.0
BLK=22.0
BLK=24.0
BLK=26.0
BLK=28.0
BLK=30.0
BLK=32.0

Figure 10. Point set registration performance rate results on the NVIDIA Kepler K40c card with

the NVIDIA nvcc compiler for various loop blocking configurations without the use of shared

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0

10

20

30

40

50

Gi
ga

 p
oi

nt
s p

er
 se

co
nd

Best and Worst Performance Results

Figure 11. Point set registration performance rate results on the NVIDIA Pascal P100 card

with the NVIDIA nvcc compiler for the best and worst autotuning configurations using FP16

arithmetic

it is possible to gain a percentage point or more in terms of performance if the shared memory is

not used and the main memory is accessed directly.

3.5. Limited Precision Implementation

Finally, we close the results section with tests that measure the influence of low-precision

hardware on the performance of our EM-ICP implementations. To that end, we use an NVIDIA

Pascal GPU card with the P100 chip. From our perspective, that accelerator features dedicated

FP16 units in each Streaming Multiprocessor (SM). These units perform the arithmetic instruc-

tions at twice the rate of the corresponding FP32 instructions. Also, the data size needed for the

Autotuning Techniques for Performance-Portable Point Set Registration in 3D

56 Supercomputing Frontiers and Innovations

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0

10

20

30

40

50

Gi
ga

 p
oi

nt
s p

er
 se

co
nd

Best and Worst Performance Results for FP16 and FP32

FP16 fastest
FP32 fastest
FP32 slowest
FP16 slowest

Figure 12. Point set registration performance rate results on the NVIDIA Pascal P100 card with

the NVIDIA nvcc compiler for the best and worst autotuning configurations using either FP16

or FP32 arithmetic

#pragma omp parallel for

for (i← 0; i < nX ; i← i+1)

for (j ← 0; j < nY ; j ← j+1)

. . .

#pragma omp parallel for collapse(2)

for (i← 0; i < nX ; i← i+1)

for (j ← 0; j < nY ; j ← j+1)

. . .

Figure 13. Optimal Configuration for GNU Compiler on x86

FP16 instructions is twice as small and, consequently, it would be obvious to expect about a

two-fold increase in performance for both compute-bound and bandwidth-bound codes. Both of

these are present in the registration methods tested here.

To give the reader an idea as to what number of autotuning tests we conducted in an

automated manner, and the number of the generated code variants from the eligible parameter

configurations, we used Fig. 7 with all measurements. But to more clearly indicate the possible

range of performance metrics, Fig. 11 shows the best and the worst performance rate when FP16

arithmetic is used. At first, it may seem somewhat underwhelming especially when compared

with all the prior results presented so far in previous sections. To identify in detail how FP16 and

FP32 arithmetic results compare against each other, we focus in Fig. 12 on just the most relevant

data. The figure attempts to indicate how the FP16 arithmetic performs when compared with

FP32 and whether it is faster in absolute terms. Unfortunately, the improvement is not as high

as the 2-fold higher performance rate suggested by the raw hardware specification (2-fold faster

execution and twice as much bandwidth) are not realized in practice in our experiments. We will

examine this particular result next in greater detail by looking at low-level artifacts including as

assembly-level code and the instruction mix that we believe contributes to the observed effect.

P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra

2018, Vol. 5, No. 4 57

// FP16-FP32 conversions contribute additional

// overheads and hit against hardware limit

cvt.f32.f16 f, r // convert from FP16

sqrt.approx.f32 f, f // compute in FP32

cvt.rn.f16.f32 r, f // convert to FP16

Figure 14. A Glance at PTX (NVIDIA’s Pseudo-Assembly)

4. Discussion on GNU and FP16 Results

Figure 4 singled out the GNU gcc compiler’s issues with generating optimized instruction

mix for the registration code. Despite our efforts to enable optimized parallelization levels we saw

the lack of efficiency in the use of multi-threading as it exhibited low core utilization rates which

resulted in inferior execution speed. This potentially may be remedied by merging deep loop

nests into a combined index set. That set is then divided (in some fashion) among the available

OpenMP threads. This is done manually by inserting specifically crafted pragma directives.

OpenMP standard specifies collapse clause to have this loop-nest merging performed by the

GNU compiler. Such an optimization may be applied as shown in Fig. 13. Our autotuning

framework easily allows the user to introduce the clause conditionally in the generated code

variants and then tests the resulting binaries with a number of loop-collapsing parameters. In the

end, this allows the autotuning process to find out the optimal setting for the tested hardware

platform and the software stack combination.

Also somewhat surprising result was uncovered during the autotuning process and may be

observed in Fig. 12. What is shown is comparatively small difference between the performance

obtained from the implementation variants that use either FP16 and FP32 floating-point arith-

metic. As our analysis indicates, this may be fully attributed to the overhead of conversion

instructions. We confirmed this information by analyzing the PTX assembly-level code produced

by the NVIDIA nvcc compiler and PTX code generator. The PTX code in question is shown

in Fig. 14 in a simplified style to focus on relevant code and with majority the extra details

removed. Mixing FP16 and FP32 data on the same GPU engages the hardware conversion

units on the NVIDIA Pascal chips and those are limited in number. Much fewer of these units

are available when compared, for example, with floating point units in either FP16 and FP32

floating-point precisions. These conversions slow down the overall execution within a single GPU

thread warp and contributes to the overall slowdown of the code. Clearly, any performance

gains are squandered and we loose what might have been obtained from using FP16 precision if

only enough hardware units were available. We observed this phenomenon while we performed

autotuning procedure and otherwise it might have not been exposed if it was obstructed by

other bottlenecks. It might have also been missed in an non-optimized or manually optimized

code. This kind of effects occur mostly in automatically generated code and are otherwise hidden

due to a limited exposure of the compiler to the large variety implementation variants that are

possible through autotuning.

Concluding Remarks and Future Work

In this article, we presented an application of the autotuning approach to the EM-ICP

algorithm. EM-ICP is a stochastic method used for the point set registration problem and we

Autotuning Techniques for Performance-Portable Point Set Registration in 3D

58 Supercomputing Frontiers and Innovations

used it for 3D point clouds. In our tests, we applied a variety of automated transformations which

resulted in an improved performance. We also used an automated process of generating a set of

implementation variants. First, this allowed us to largely exceed the performance achieved by the

reference code that was only optimized manually. Second, we searched the large parameter space

of potential performance-oriented implementations to arrive at stable and portable performance

levels. Those made the resulting EM-ICP codes available not on one but across a large range of

hardware platforms and software stacks. In particular, our methodology and autotuning framework

generated implementations for multicore, many-core, and accelerator-equipped machines.

We plan on extending this work to a wider range of algorithm that are available for the

variants of the registration problem. Creating efficient codes for these methods is a natural future

direction for us. We also intend to pursue more experimental approaches. However, due to a

large number of algorithms and algorithmic variants for the point set registration problem, we

intend to guide our selection of the promising method by the need of the relevant scientific fields.

There are many such fields in need of point set registration implementations for analysis of large

data sets such as APT experiments. These computational science fields benefit the most from

our efforts in the performance engineering domain that we presented above. This is because

we manage to achieve high execution rates which clearly contribute to ability to process large

volumes of data coming from the experimental instrumentation tools such as Atomic Probe

Tomography microscopes in material science and HEA material design.

Acknowledgements

This research was supported by United States National Science Foundation through grant

1642441.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Bartok, A., Kondor, R., Csanyi, G.: On representing chemical environments. Physical Review

B 87(18) (2013), DOI: 10.1103/PhysRevB.87.184115

2. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE PAMI 14(2), 239–256

(1992), DOI: 10.1109/34.121791

3. Chui, H., Rangarajan, A.: A feature registration framework using mixture models. In: IEEE

Workshop on MMBIA. pp. 190–197 (2000), DOI: 10.1109/MMBIA.2000.852377

4. Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: CVPR. vol. 2,

pp. 44–51. IEEE Press (2000), DOI: 10.1016/S1077-3142(03)00009-2

5. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. CVIU

89(2–3), 114–141 (2003), DOI: 10.1016/S1077-3142(03)00009-2

6. Du, S., Zheng, N., Xiong, L., Ying, S., Xue, J.: Scaling iterative closest point algorithm for

registration of md point sets. Journal of Visual Communication and Image Representation

21(5–6), 442–452 (2010), DOI: 10.1016/j.jvcir.2010.02.005

P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra

2018, Vol. 5, No. 4 59

7. Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. Image and Vision Computing

21, 1145–1153 (2003), DOI: 10.1016/j.imavis.2003.09.004

8. Gao, M.C., Yeh, J.W., Liaw, P.K., Zhang, Y.: High-entropy alloys: fundamentals and

applications. Springer International Publishing Switzerland (2016), DOI: 10.1007/978-3-319-

27013-5

9. Gold, S., Lu, C.P., Rangarajan, A., Pappu, S., Mjolsness, E.: New algorithms for 2D and 3D

point matching: Pose estimation and corresp. In: NIPS. vol. 7, pp. 957–964. The MIT Press

(1995), DOI: 10.1016/S0031-3203(98)80010-1

10. Granger, S., Pennec, X.: Multi-scale EM-ICP: A fast and robust approach for surface

registration. In: et al., A.H. (ed.) ECCV 2002. pp. 418–432. LNCS 2353, (c) Springer-Verlag

Berlin Heidelberg (2002), DOI: 10.1007/3-540-47979-1 28

11. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited

numerical precision. CoRR abs/1502.02551 (2015), http://arxiv.org/abs/1502.02551,

accessed: 2018-08-01

12. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited

numerical precision. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International

Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 1737–

1746. PMLR, Lille, France (2015), http://proceedings.mlr.press/v37/gupta15.html,

accessed: 2018-08-01

13. Hockney, R.W., Curington, I.J.: f 1

2
: A parameter to characterize memory and communication

bottlenecks. Parallel Computing 10(3), 277–286 (1989), DOI: 10.1016/0167-8191(89)90100-2

14. Kim, Y.M., Morozovska, A., Eliseev, E., Oxley, M., Mishra, R., Selbach, S., Grande, T.,

Pantelides, S., Kalinin, S., Borisevich, A.: Direct observation of ferroelectric field effect

and vacancy-controlled screening at the BiFeO3/LaxSr1−xMnO3 interface. Nature Materials

13(11), 1019–1025 (2014), DOI: 10.1038/nmat4058

15. Larson, D., Prosa, T., Ulfig, R., Geiser, B., Kelly, T.: Local Electrode Atom Probe Tomogra-

phy: A User’s Guide. Springer-Verlag New York (2013), DOI: 10.1007/978-1-4614-8721-0

16. Luszczek, P., Gates, M., Kurzak, J., Danalis, A., Dongarra, J.: Search space generation and

pruning system for autotuners. In: Proceedings of IPDPSW. pp. 1545–1554. The Eleventh

International Workshop on Automatic Performance Tuning (iWAPT) 2016, IEEE, Chicago,

IL, USA (2016), DOI: 10.1109/IPDPSW.2016.197

17. Luszczek, P., Kurzak, J., Yamazaki, I., Dongarra, J.: Towards numerical benchmark for half-

precision floating point arithmetic. In: 2017 IEEE High Performance Extreme Computing

Conference (2017), DOI: 10.1109/HPEC.2017.8091031

18. Luszczek, P., Kurzak, J., Yamazaki, I., Keffer, D., Dongarra, J.J.: Scaling point set reg-

istration in 3D across thread counts on multicore and hardware accelerator platforms

through autotuning for large scale analysis of scientific point clouds. In: 2017 IEEE Inter-

national Conference on Big Data (Big Data). pp. 2893–2902. Boston, MA, USA (2017),

DOI: 10.1109/BigData.2017.8258258

Autotuning Techniques for Performance-Portable Point Set Registration in 3D

60 Supercomputing Frontiers and Innovations

19. Miller, M.K., Forbes, R.G.: Atom-Probe Tomography: The Local Electrode Atom Probe.

Springer US (2014), DOI: 10.1007/978-1-4899-7430-3

20. Myronenko, A., Song, X., Carreira-Perpiñán, M.A.: Non-rigid point set registration: Coherent

Point Drift. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) Advances in Neural Information

Processing Systems 19. pp. 1009–1016. MIT Press (2007)

21. Rangarajan, A., Chui, H., Mjolsness, E., Davachi, L., Goldman-Rakic, P.S., Duncan, J.S.:

A robust point matching algorithm for autoradiograph alignment. Medical Image Analysis

1(4), 379–398 (1997), DOI: 10.1016/S1361-8415(97)85008-6

22. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Interna-

tional Conference on 3D Digital Imaging and Modeling (3DIM). pp. 145–152 (2001),

DOI: 10.1109/IM.2001.924423

23. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE Inter-

national Conference on Robotics and Automation (ICRA). Shanghai, China (2011),

DOI: 10.1109/ICRA.2011.5980567

24. Sohlberg, K., Rashkeev, S., Borisevich, A., Pennycook, S., Pantelides, S.: Origin of anomalous

Pt-Pt distances in the Pt/Alumina catalytic system. ChemPhysChem 5(12), 1893–1897 (2004),

DOI: 10.1002/cphc.200400212

25. Volkov, V., Demmel, J.W.: Benchmarking GPUs to Tune Dense Linear Algebra. In: Pro-

ceedings of the 2008 ACM/IEEE Conference on Supercomputing. pp. 31:1–31:11. SC ’08,

IEEE Press, Piscataway, NJ, USA (2008), http://dl.acm.org/citation.cfm?id=1413370.

1413402, accessed: 2018-08-01, DOI: 10.1145/1413370.1413402

26. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., Lu, Z.P.: Microstruc-

tures and properties of high-entropy alloys. Progress in Materials Science 61, 1–93 (2014),

DOI: 10.1016/j.pmatsci.2013.10.001

27. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Interna-

tional Journal of Computer Vision 13(2), 119–152 (1994), DOI: 10.1007/BF01427149

P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra

2018, Vol. 5, No. 4 61

	P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra

