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The paper is devoted to a scalability study of Cimmino algorithm for linear inequality systems.

This algorithm belongs to the class of iterative projection algorithms. For the analytical analysis

of the scalability, the BSF (Bulk Synchronous Farm) parallel computation model is used. An

implementation of the Cimmino algorithm in the form of operations on lists using higher-order

functions Map and Reduce is presented. An analytical estimation of the scalability boundary of

the algorithm for cluster computing systems is derived. An information about the implementation

of Cimmino algorithm on lists in C++ language using the BSF program skeleton and MPI parallel

programming library is given. The results of large-scale computational experiments performed on

a cluster computing system are demonstrated. A conclusion about the adequacy of the analytical

estimations by comparing them with the results of computational experiments is made.
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Introduction

The problem of solving systems of linear inequalities arise in numerous fields. As examples,

we can mention linear programming [1, 2], image reconstruction from projections [3], image pro-

cessing in magnetic resonance imaging [4], intensity-modulated radiation therapy (IMRT) [5].

At the present time, a lot of methods for solving systems of linear inequalities are known, among

which we can mark out a class of self-correcting iteration methods that allow efficient paralleliza-

tion. In this field, pioneer works are papers [6, 7], in which the Agmon–Motzkin–Schoenberg re-

laxation method for solving systems of linear inequalities was proposed. The relaxation method

belongs to the class of projection methods, which use the operation of orthogonal projection

onto a hyperplane in Euclidean space. One of the first iterative algorithms of projection type

was the Cimmino algorithm [8], intended for solving systems of linear equations and inequalities.

Cimmino algorithm had a great influence on the development of computational mathematics [9].

A considerable number of papers have been devoted to the generalizations and extensions of the

Cimmino algorithm (for example, see [3, 10–13]).

In many cases, systems of linear inequalities arising in the solution of practical problems

can involve up to tens of millions of inequalities and up to hundreds of millions of variables [2].

In this case, the issue of developing scalable parallel algorithms for solving large-scale systems

of linear inequalities on multiprocessor systems with distributed memory becomes very urgent.

When one creates parallel algorithms for large multiprocessor systems, it is important at an

early stage of the algorithm design (before coding) to obtain an analytical estimation of its

scalability. For this purpose, one can use various models of parallel computation [14]. Nowadays,

a large number of different parallel computation models are known. The most famous models

among them are PRAM [15], BSP [16] and LogP [17]. Each of these models generated a large
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family of parallel computation models, which extend and generalize the parent model (see,

e.g., [18–20]). The problem of developing new parallel computation models is still important

today. The reason is that it is impossible to create a parallel computation model, which is good

in all respects. To create a good parallel computation model, the designer must restrict the

set of target multiprocessor architectures and class of algorithms. In paper [21], the parallel

computation model BSF (Bulk Synchronous Farm) intended for cluster computing systems and

iterative algorithms was proposed. The BSF model makes it possible to predict the scalability

boundary of an iterative algorithm with great accuracy before coding. An example of using the

BSF model is given in [22].

The purpose of this article is to investigate the scalability of the Cimmino algorithm for solv-

ing large-scale systems of linear inequalities on multiprocessor systems with distributed memory

by using the BSF parallel computation model. The rest of the article is organized as follows.

Section 1 gives a formal description of the Cimmino algorithm. In Section 2, the representation

of the Cimmino algorithm in the form of operations on lists using higher-order functions Map

and Reduce defined in the Bird–Meertens formalism is constructed. Section 3 is dedicated to

an analytical investigation of the scalability of the Cimmino algorithm on lists using the BSF

model cost metrics; the equations for estimating the speedup and parallel efficiency are given;

the boundary of the algorithm scalability depending on the problem size is calculated. In Sec-

tion 4, a description of the implementation of the Cimmino algorithm on lists in C++ language

using the BSF algorithmic skeleton and the MPI parallel programming library is presented; a

comparison of the results obtained analytically and experimentally is given. In conclusion, the

obtained results are summarized and directions for further research are outlined.

1. Cimmino Algorithm for Inequalities

Let us consider the system of linear inequalities

li(x) = 〈ai, x〉 − bi 6 0 (i = 1, . . . ,m), (1)

where 〈ai, x〉 is the Euclidean inner product of ai and x in Rn, bi ∈ R. To avoid triviality, we

assume m > 2. We also assume that the system (1) is consistent. It is necessary to find a solution

of the system of linear inequalities (1). To solve this problem, it is convenient to use a geometric

language. Thus, we look upon x = (x1, . . . , xn) as a point in n-dimensional Euclidean space Rn,

and each inequality li(x) 6 0 as a half-space Pi. Therefore, the set of solutions of system (1) is

the convex polytope M =
m⋂
i=1

Pi. Each equation li(x) = 0 defines a hyperplane Hi:

Hi = {x ∈ Rn| 〈ai, x〉 = bi} . (2)

Let the orthogonal projection of x ∈ Rn onto the hyperplane Hi ⊂ Rn be denoted by πHi
(x).

The orthogonal projection πHi
(x) can be calculated by the following equation:

πHi
(x) = x+

bi − 〈ai, x〉
‖ai‖2

ai, (3)

where ‖·‖ is the Euclidean norm. Let us define the orthogonal reflection of x with respect to

hyperplane Hi as follows:

ρHi
(x) = πHi

(x)− x =
bi − 〈ai, x〉
‖ai‖2

ai. (4)
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The Cimmino algorithm for equally weighted inequalities consists of the following steps:

Step 1: k := 0; x0 := 0.

Step 2: xk+1 := xk + λ
m

m∑
i=1

ρHi
(xk).

Step 3: If ‖xk+1 − xk‖2 < ε then go to Step 5.

Step 4: k := k + 1; go to Step 2.

Step 5: Stop.

Cimmino’s method starts with an arbitrary point x0 in Rn as an initial approximation,

and then calculates at each step the centroid of a system of masses placed at the reflections

of the previous iterate with respect to the hyperplanes H1, . . . ,Hm defined by the system of

inequalities. This centroid is taken as the new iterate:

xk+1 = xk +
λ

m

m∑

i=1

ρHi
(xk). (5)

In equation (5), λ is a relaxation parameter. It is known [10] that for 0 < λ < 2 the iteration

process (5) converges to a point belonging to the polytope M .

2. Cimmino Algorithm in the Form of Operations on Lists

In order to obtain analytical estimations of an algorithm using the cost metrics of the BSF

model, it must be represented in the form of operations on lists using higher-order functions

Map and Reduce defined in the Bird–Meertens formalism [23]. The higher-order function Map

applies the given function F : A → B to each element of the given list [a1, . . . , am] and returns

a list of results in the same order:

Map(F, [a1, . . . , am]) = [F (a1), . . . , F (am)]. (6)

The higher-order function Reduce reduces the given list [b1, . . . , bm] to a single value by itera-

tively applying the given binary associative operation ⊕ : B × B → B to each pair of elements:

Reduce(⊕, [b1, . . . , bm]) = b1 ⊕ . . .⊕ bm. (7)

In the context of the Cimmino algorithm, we define the list Lmap as follows:

Lmap = [i1, . . . , im], (8)

where ik ∈ {1, . . . ,m} and ik 6= il for k 6= l (k, l = 1, . . . ,m). In other words, Lmap – is the list

of numbers of inequalities (1) ordered in an arbitrary way. For an arbitrary point x ∈ Rn, let us

define the function Fx : {1, . . . ,m} → Rn as follows:

Fx(i) = ρHi
(x) (9)

for all i ∈ {1, . . . ,m}. In other words, the function Fx(i) calculates the orthogonal reflection

of x with respect to the hyperplane Hi. For an arbitrary point x ∈ Rn, let us define the list

L
(x)
reduce ⊂ Rn as follows:

L
(x)
reduce = [Fx(i1), . . . , Fx(im)]. (10)
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The list L
(x)
reduce holds orthogonal reflections of the point x with respect to the hyperplanes

H1, . . . ,Hm in the order determined by the list Lmap. Thus, the list L
(x)
reduce is obtained from the

list Lmap by applying to it the higher-order function Map using as a parameter the function Fx:

L
(x)
reduce = Map(Fx, Lmap). (11)

Let us define the binary associative operation ⊕ : Rn × Rn → Rn as follows:

x⊕ y = x+ y (12)

for all x, y ∈ Rn. In this case, the ⊕ operator performs the conventional composition of vec-

tors. Then the sum of orthogonal reflections of the point x can be obtained by applying to

the list L
(x)
reduce the higher-order function Reduce using as a parameter the vector composition

operation ⊕:
m∑

i=1

ρHi
(x) = Reduce(⊕, L(x)

reduce). (13)

Now we can write the Cimmino algorithm in the form of operations on lists:

Step 1: k := 0; x0 := 0; Lmap := [1, . . . ,m].

Step 2: L
(xk)
reduce := Map(Fxk

, Lmap).

Step 3: s := Reduce(⊕, L(xk)
reduce).

Step 4: xk+1 := xk + λ
ms.

Step 5: If ‖xk+1 − xk‖2 < ε then go to Step 7.

Step 6: k := k + 1; go to Step 2.

Step 7: Stop.

The BSF model assumes that the algorithm is executed by a computing system consisting

of one master-node and K worker-nodes (K > 0). Step 1 of the algorithm is performed by both

the master and the workers during the initialization of the iterative process. Step 2 (Map) is

performed only on the worker-nodes. Step 3 (Reduce) is performed on the worker-nodes and

partially on the master-node. Steps 4–6 are performed only on the master-node. The BSF model

assumes that all arithmetic operations (addition and multiplication) as well as comparison op-

erations on floating-point numbers take the same time τop.

3. Analytical Evaluation of Scalability

Let us introduce the following notation for the scalability evaluation of the Cimmino algo-

rithm:

cs : the quantity of float numbers transferred from the master to one

worker;

cmap : the quantity of arithmetic operations performed in the Map step

(Step 2 of the algorithm);

ca : the quantity of arithmetic operations required to calculate the sum of two

vectors;
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cr : the quantity of float numbers transferred from one worker to the

master;

cp : the quantity of arithmetic and comparison operations performed by the master in

Steps 4 and 5 of the algorithm.

Let us calculate the indicated values. At the beginning of each iteration, the master sends

to all the workers the current approximation xk, which is a vector of dimension n. Hence:

cs = n. (14)

Let us calculate the number of arithmetic operations performed in the Map step. For each el-

ement of the list Lmap, one vector is calculated by equation (4). Note that the values of ‖ai‖2
(i = 1, . . . ,m) do not depend on xk, and therefore can be calculated in advance at the initializa-

tion stage. Taking this into account, the quantity of operations for calculating one orthogonal

reflection of the point xk is 3n + 1. Multiplying this value by the number of inequalities, we

obtain

cmap = m(3n+ 1). (15)

During the execution of Reduce step, the list Lreduce consisting of m vectors is divided into equal

parts, each of them assigned to a single worker. Everywhere below we assume that K 6 m. For

simplicity we assume that m is a multiple of number of workers K. The composition of vectors

of dimension n requires n arithmetic operations. Hence:

ca = n. (16)

After execution of Reduce step, each worker sends the resulting vector to the master. Thus:

cr = n. (17)

The execution of Step 4 requires 2n operations (we assume the constant value of λ/m to be

computed in advance). The execution of Step 5 requires 3n − 1 arithmetic operations and one

comparison operation. It follows the equation:

cp = 5n. (18)

Let us designate the time spent by the worker to perform one arithmetic operation as τop,

and designate the time spent for transferring a single float number across the network excluding

latency as τtr. In that way, we get the following values for the cost parameters of the BSF

model [21] in the case of the Cimmino algorithm:

ts = nτtr; (19)

tmap = m(3n+ 1)τop; (20)

ta = nτop; (21)

tr = nτtr; (22)

tp = 5nτop. (23)
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Equation (19), obtained on the basis of (14), gives an estimation of the time ts spent by the

master to transfer a message to one worker excluding latency. Equation (20) is obtained using the

equation (15). According to the BSF model cost metric, tmap denotes the total time spent by a

single worker to process the entire Map list. Equation (21) obtained using equation (16) calculates

the time tp spent by a processor node on adding two vectors of dimension n. Equation (22),

obtained on the basis of (17), gives an estimation of the time tr spent by the master to transfer

a message to one worker excluding latency. Equation (23) obtained using equation (18) calculates

the time tp spent by the master on the following actions: calculating the next approximation

and checking of the stopping criterion. In accordance with this metric, the time for solving the

problem by a system consisting of one master and one worker (K = 1) can be estimated as

follows:

T1 = 2L+ ts + tr + tp + tMap + lta

= 2(L+ τtrn) + τop (5n+m(3n+ 1) + (m− 1)n) .
(24)

The time of solving the problem by a system composed of one master and K workers can be

estimated by the following equation:

TK = K (2L+ ts + tr + ta) +
tMap + lta

K
− ta + tp

= 2K(L+ τtrn+ τopn) + τop

(
m(3n+ 1) + (m− 1)n

K
+ 4n

)
.

(25)

For m→∞ , the equations (24) and (25) asymptotically tend to the following estimations:

T1 = 2(L+ τtrn) + τop (5n+m(3n+ 1) +mn) ; (26)

TK = 2K(L+ τtrn+ τopn) + τop

(
m(3n+ 1) +mn

K
+ 4n

)
. (27)

On the basis of equations (26) and (27) we can write the equation for speedup a in the form of

a function of K:

a(K) =
T1
TK

=
2(L+ τtrn) + τop (5n+m(3n+ 1) +mn)

2K(L+ τtrn+ τopn) + τop

(
m(3n+1)+mn

K + 4n
) . (28)

To determine the scalability boundary of the Cimmino algorithm in accordance with the

procedure described in [21], let us deduce the derivative a′(K) and solve the equation

a′(K) = 0. (29)

Using simple algebraic transformations, from equation (28), we can deduce the following equation

for the derivative of speedup:

a′(K) = (2(L+ τtrn) + τop (5n+m(3n+ 1) +mn)) ·

·
m(3n+1)+mn

K2 τop − 2(L+ nτtr)− τopn(
2K(L+ τtrn+ τopn) + τop

(
m(3n+1)+mn

K + 4n
))2 .

(30)
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Let us solve the equation

(2(L+ τtrn) + τop (5n+m(3n+ 1) +mn)) ·

·
m(3n+1)+mn

K2 τop − 2(L+ nτtr)− τopn(
2K(L+ τtrn+ τopn) + τop

(
m(3n+1)+mn

K + 4n
))2 = 0.

(31)

Dividing both sides of equation (31) by the positive quantity

2(L+ τtrn) + τop (5n+m(3n+ 1) +mn)

and multiplying by the positive quantity

(
2K(L+ τtrn+ τopn) + τop

(
m(3n+ 1) +mn

K
+ 4n

))2

we obtain the equation

m(3n+ 1) +mn

K2
τop − 2(L+ nτtr)− τopn = 0,

which implies

K =

√
(m(3n+ 1) +mn) τop

2(L+ nτtr) + nτop
.

Thus, equation (31) has the only root

K0 =
√

(m(3n+ 1) +mn) τop/(2(L+ nτtr) + nτop)

on the interval [1,+∞). It is easy to see that the derivative a′(K) calculated by the equa-

tion (30) takes only positive values in the interval [1,K0) and only negative values in the interval

(K0,+∞). Therefore, the point K0 is the maximum of the function a(K) on the interval [1,+∞).

It follows that the maximum of speedup is obtained at the point K0. Thus, in accordance with

the BSF model, the boundary Kmax of the scalability of the Cimmino algorithm is determined

by the following equation:

Kmax =

√
(m(3n+ 1) +mn) τop

2(L+ nτtr) + nτop
. (32)

Let us simplify equation (32). For n,m→∞, we have

(m(3n+ 1) +mn) τop ≈ O(mn) (33)

and

2(L+ nτtr) + nτop ≈ O(n). (34)

Substituting the right-hand sides of equations (33) and (34) into (32), we obtain

Kmax =

√
O(mn)

O(n)
,

which is equivalent to

Kmax =
√
O(m). (35)
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In that way, the boundary of the scalability of the Cimmino algorithm on lists increases in

proportion to the square root of the number m of inequalities. In conclusion of this section, let

us write the equation for estimating the parallel efficiency e as a function of K. Considering

equation (28), we have

e(K) =
a(K)

K
=

2(L+ τtrn) + τop (5n+m(3n+ 1) +mn)

2K2(L+ τtrn+ τopn) + τop (m(3n+ 1) +mn+ 4nK)
. (36)

4. Numerical Experiments

In order to verify the analytical results, we implemented the Cimmino algorithm in

C++ language using the BSF algorithmic skeleton and the MPI parallel programming li-

brary. The source code of this program is freely available on Github, at https://github.

com/leonid-sokolinsky/BSF-Cimmino. The system of inequalities was taken from the model

scalable linear-programming problem Model-n given in [24]. In this system, the number of in-

equalities is m = 2n + 2, where n is the dimension of the space. We investigated the speedup

and parallel efficiency of the Cimmino algorithm on the supercomputer “Tornado SUSU” [25].

The calculations were performed for the dimensions 1 500, 5 000, 10 000 and 16 000. At the same

time, we plotted the curves of speedup and parallel efficiency for these dimensions using equa-

tions (28) and (36). For this, the following values in seconds were determined experimentally:

L = 1.5 · 10−5, τop = 2.9 · 10−8 and τtr = 1.9 · 10−7. The results are presented in Fig. 1–4.

In all cases, the analytical estimations were very close to experimental ones. Moreover, the

performed experiments show that the boundary of the BSF-program scalability increases in pro-

portion to the square root of the number m of inequalities. It was analytically predicted by the

equation (35).

Conclusion

In this paper, the scalability and parallel efficiency of the iterative Cimmino algorithm used

to solve large-scale linear inequality systems on multiprocessor systems with distributed memory

were investigated. To do this, we used the BSF (Bulk Synchronous Farm) parallel computation

model based on the “master-slave” paradigm. The BSF-implementation of the Cimmino algo-

rithm in the form of operations on lists using higher-order functions Map and Reduce is described.

A scalability boundary of the BSF-implementation of the Cimmino algorithm is obtained. This

estimation tells us the following. If space dimension n is greater than or equal to the number m

of inequalities, then the boundary of the scalability of the Cimmino algorithm on lists increases

in proportion to the square root of the number m of inequalities. So, we may conclude that

the Cimmino algorithm on lists is scalable well. Also, the equations for estimating the speedup

and parallel efficiency of the Cimmino algorithm on lists are obtained. The implementation of

the Cimmino algorithm in C++ language using the BSF algorithmic skeleton and the MPI

parallel programming library was performed. This implementation is freely available on Github,

at https://github.com/leonid-sokolinsky/BSF-Cimmino. On a cluster computing system,

the large-scale experiments were conducted to obtain the actual speedup and parallel efficiency

curves for systems having number of variables 1 500, 5 000, 10 000, 16 000 and the number of

inequalities 3 002, 10 002, 20 002, 32 002, respectively. The results of the experiments showed

that the BSF model predicts the boundary of the scalability of the Cimmino algorithm on lists

with high accuracy. As future research directions, we intend to do the following:
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Figure 1. Experiments for n = 1 500 and m = 3 002
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Figure 2. Experiments for n = 5 000 and m = 10 002
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Figure 3. Experiments for n = 10 000 and m = 20 002
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Figure 4. Experiments for n = 16 000 and m = 32 002
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1) apply the Cimmino algorithm to implement the Qwest phase of the NSLP algorithm [2],

designed to solve large-scale non-stationary linear programming problems;

2) carry out computational experiments to solve large-scale linear programming problems on a

cluster computer system under the conditions of dynamically changing the input data.
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