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In this work we present a parallel implementation of numerical algorithm solving the Cauchy

problem for equation of advection of coagulating particles. This equation describes time-evolution

of the concentration f(x, v, t) of particles of size v at the point x at the time-moment t. Our numer-

ical algorithm is based on use of total variation diminishing (TVD) scheme and perfectly matching

layers (PML) for approximation of advection operator along spatial coordinate x and utilization of

the fast numerical method for evaluation of coagulation integrals exploiting low-rank decomposi-

tion of coagulation kernel coefficients and fast FFT-based implementation of convolution operation

along particle size coordinate v. In our work we exploit one-dimensional domain decomposition

approach along spatial coordinate x because it allows to avoid use of parallel FFT implementations

which are very expensive in terms of data exchanges and have poor parallel scalability. Moreover,

locality of finite-difference operator from TVD-scheme along x coordinate allows to obtain good

scalability even for computing clusters with slow network interconnect due to modest volumes of

data necessary for synchronization exchanges between times integration steps.
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Introduction

Coagulation and fragmentation processes stand in the basement of a wide class of physical

phenomena starting from micro-polymer chains growth [6, 17] and finishing at the scale of stars

formation from interstellar dust [5, 8]. The very first model of aggregation was suggested by

Smoluchowski in 1916 [24] and generalized by Hans Muller [18] into the form of the following

integro-differential equation:

∂f(t, v)

∂t
=

1

2

v∫

0

K(u, v − u)f(t, u)f(t, v − u)du− f(t, v)

∞∫

0

K(v, u)f(t, u)du (1)

This equation describes dynamics of concentration f(t, v) of the particles of size v per unit

volume. The first term in the right-hand side corresponds to growth of concentration due to

coalescence of the aggregates of sizes v and v − u. The second term describes decrease of the

concentration due to their coalescence of the particles of size v with other particles. Kernel

coefficients

K(v, u) = K(u, v) ≥ 0

correspond to rates of aggregation process and have to be derived for each concrete application.

If the initial conditions f(t = 0, v) are known, then Cauchy problem for the coagulation equation

is defined and can be solved numerically.

Under natural assumptions [8] the solution of the Cauchy problem for semi-infinite size

domain v ∈ [0,∞) can be approximated by its finite part v ∈ [0, Vmax]. In fact, the class
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of mathematical models of potential interest is extremely wide and may include description of

various physical effects: inception and sinks of particles of concrete sizes [2], unary fragmentation

process [1] due to instabilities of big clusters and binary collisional fragmentation process [5],

and many others [3, 7, 12, 14, 20]. Even though the list of phenomena for application of spatially

homogeneous aggregation and fragmentation equations is really huge [25, 26], there is an even

broader class of spatially inhomogeneous models [19, 22]. In this work we concentrate on analysis

of advection-coagulation equation [28]:

∂f(t, x, v)

∂t
+ c(v)

∂f(t, x, v)

∂x
=

1

2

v∫

0

K(u, v − u)f(t, x, u)f(t, x, v − u)du−

(2)

−f(t, x, v)

∞∫

0

K(u, v)f(t, x, u)du,

where function f(t, x, v) corresponds to concentration per unit volume of particles of size v

at the point with coordinate x at moment t. Coagulating particles are transported along the

axis of nonnegative coordinate x with velocity c(v). The velocities of the coalescence processes

are again determined by the values of function K(u, v). In the similar manner with classical

coagulation equation one needs initial conditions f(t = 0, x, v) and one boundary condition e.g.

f(t, x = 0, v) for definition of the Cauchy problem for advection-coagulation equation and its

further numerical investigation.

Recently, we proposed an efficient numerical method solving the Cauchy problem for this

equation [28] and demonstrated its efficiency for the concrete examples of modelling problems.

We revisit description of this algorithm in Section 1.

Nevertheless, even modest simulations presented in our previous report required quite a lot

of CPU-time. In this work we propose a parallel implementation of this algorithm. We should

also emphasize, that there exists a special parallel algorithm allowing to perform evaluation

of aggregation and fragmentation sums of the similar structure as coagulation integrals. Even

though, a reasonable speedup of calculations was presented at [16], the parallel scalability of the

algorithm is relatively poor [16]. This fact lies in motivation to exploit one-dimensional domain

decomposition approach along spatial coordinate x for advection-coagulation equation but not

along axis v and not two-dimensional domain decomposition.

In Section 2 we present a detailed description of novel parallel algorithm. Section 3 is devoted

to tests of performance of the proposed algorithm at different computing clusters and Lomonosov

supercomputer. We obtain speedup of calculations more than by 300 times. This allows us

consider a broader class of problems of potential interest for mathematical modelling and studies

of advection-coagulation processes. In conclusions we discuss the presented results and possible

directions for further generalization of the presented ideas.

1. Numerical Method, Revisited

In this section we revisit description of the fast numerical algorithm for advection-

coagulation equation from work [28]. First of all, we use an explicit Euler time-integration
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scheme with time step ∆t for solution of the Cauchy problem:

fn+1 − fn
∆t

= A(fn) + S(fn),

where A(f) is an approximation of the advection operator and S(f) approximates Smoluchowski

integrals. Let us denote M as number of grid nodes along particle size axis v with grid step ∆v

and parameters v1 = 0, vM = M ·∆v and N as number of spatial grid nodes along x with step

∆x, x1 = 0, xN = N · ∆x. Finally, we denote fni,j as value of numerical solution at grid node

(xj , vi) at the moment n ·∆t.
For S(f) we use skeleton decomposition of coagulation kernel and fast algorithms of linear

algebra with overall algorithmic complexity of solution scheme to be O(MR logM) at each

grid node along x axis [13]. Whereas without utilization of these ideas the complexity becomes

O(M2). We discuss this method with more details in Section 2.2. We get significant acceleration

for evaluation of Smoluchowski integrals if the rank R of the coagulation kernel is a modest

number. For approximation of the advection part A(f) we exploit well-known TVD scheme [10]

and PML layers [4] allowing us to keep monotonicity of numerical method. Detailed relations

for advection part are presented in Section 2.3.

1.1. Handling Smoluchowski Integrals

Skeleton decomposition of coagulation kernel

K(u, v) =

R∑

α=1

aα(u)bα(v)

helps accelerate computations by reduction of the algorithmic complexity of the numerical eval-

uation of Smoluchowski integrals [27, 29].

With use of skeleton decomposition we can perform transformation of the first integral:

∫ v

0
K(u, v − u)f(t, x, u)f(t, x, v − u)du =

∫ v

0

R∑

α=1

aα(u)bα(v − u)f(t, x, u)f(t, x, v − u)du =

=
R∑

α=1

∫ v

0
aα(u)f(t, x, u)bα(v − u)f(t, x, v − u)du.

Following this idea we also transform the second integral:

∫ ∞

0
K(u, v)f(t, x, u)du ≈

∫ Vmax

0

R∑

α=1

aα(u)bα(v)f(t, x, u)du =
R∑

α=1

bα(v)

∫ v

0
aα(u)f(t, x, u)du.

Transformation of integrals written as sum of R lower-triangular convolutions, hence, with the

use of FFT algorithm, total algorithmic complexity of the numerical integration using the re-

lations above yields to O(MR logM) operations at each from N points of spatial grid. Hence,

total cost of evaluation of Smoluchowski integrals is O(NMR logM)
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1.2. Approximation of Advection Part

For approximation of the advection equation we use the following TVD-scheme.

fn+1
j − fnj
dt

= A(fn) = − c

2dx
(Cjf

n
j+1 + (2− Cj − Cj−1)fnj − (2− Cj−1)fnj−1) +

+
c2dt

2dx2
(Cjf

n
j+1 − (Cj + Cj−1)fnj + Cj−1fnj−1),

where Cj is a flux limiter function that ensures that no artificial oscillations occur and has to

satisfy the following restrictions

fnj − fnj−1
fnj+1 − fnj

≥ 0→ 0 ≤ Cj ≤ 2

fnj − fnj−1
fnj+1 − fnj

< 0→ Cj = 0.

For simplicity of notations we revisit this scheme ignoring volume index i because at each grid

point along size coordinate vi we perform these operations along spatial axis x. In fact, there

are a lot of possible choices for Cj which were introduced by many authors [10, 11]. In our work,

we use the one that is called “Monotonized Central Flux Limiter” [10].

Cj = max(0,min(2rj , 0.5(1 + rj), 2)),where rj =
fj − fj−1
fj+1 − fj

The last thing that has to be done with respect to numerical solution of advection equation

is incorporation of PML to emulate the absence of the right boundary condition in the grid.

Hence, we modify the advection equation into following:

∂f

∂t
= −c∂f

∂x
− cσ(x)f,

where

σ(x) =





(m+ 1)W ln 10

d

(
x− l
d

)m
x ∈ [l; l + d],

0 elsewhere,

where l is width of calculation domain along axis x without PML, d is width of PML and W ,

m are PML parameters and formal assumption f |x=l+d ≡ 0 .

2. Parallel Algorithm

There are two possible ways of parallel implementation of our numerical method with use of

p processors. First of all, we can perform simultaneous calculation by allocation of fixed particle

size intervals to different processors. This is one-dimensional domain decomposition along axis

v. But this option turns out to be bad due to quite poor parallel scalability of the algorithm for

evaluation of the Smoluchoswki coagulation integrals what was reported in [16].

The reason lies in the fact that fast calculation of coagulation convolution typed integrals

via FFT has a very limited resource of speedup on real parallel systems. Here we refer to work [9]

where authors demonstrated that main problem in parallel execution of one-dimensional FFT is
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(a) Computation of S(fn) (b) Data exchange (c) Computation of A(fn) (d) Calculation of fn+1

Figure 1. One parallel time-integration step with use of the suggested parallel algorithm. Areas

bordered by black lines represent the grid areas allocated to separated processors

problematic due to extremely high communication costs (comparable with computational). Such

bad parallel scalability of evaluation of the coagulation integrals also leads to loss of motivation

to exploit two-dimensional domain decomposition along both v and x coordinates in application

to our problem.

However another option of execution of parallel calculations is to distribute them along the

spatial coordinate x. Such distribution of data among processors corresponds exactly to uniform

one-dimensional domain decomposition into the segments along spatial coordinate x. This ap-

proach allows to obtain very modest requirements in terms of number of communications – it is

necessary just to synchronize the boundaries of spatial segments corresponding to neighboring

processes for evaluation of advection operator with use of TVD-scheme stencil. In other words,

we can allocate integrals at different points of the physical space to different processors and then

transmit the data at the borders of the corresponding intervals. Thus, on the input each from

p processes has set of grid nodes X and values of fn(xi, vj) at this domain X × (v1, . . . , vM ).

Total complexity of time-integration step for each processor is O
(
NRM logM

p

)
operations and

requires O(pM) data elements for O(p) data exchange operations.

We present our approach informally in Fig. 1. It shows the structure of the parallel nu-

merical scheme and the areas of the grid which communicate with each other. Areas bordered

by black lines represent the grid areas allocated to separated processors. Red stripes indicate

how calculations are performed. Blue stripes pose organization of data transmission between the

neighboring processes.

During stage corresponding to Fig. 1a each process evaluates the coagulation integrals along

vertical axis v (lines 1-3 the pseudocode) and keeps two additional vectors for the boundaries

assignment (presented as white stripes). Stage from Fig. 1b corresponds to synchronization of

the particle size distributions along axis v (from blue stripes into red of the neighboring process)

for the edge coordinates x between the processes (lines 4-5 of the pseudocode). It is necessary for

the correct work of the TVD-scheme stencil. During stage from Fig. 1c the advection operator

is evaluated along axis x for each particle size v (horizontal stripes corresponding to lines 6-10).

All in all, during stage from Fig. 1d we provide calculation of the time-step result for both

coordinates v and x (lines 11-16 of the pseudocode).
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However, we should mention that grid parameter affects the parallel the efficiency of pre-

sented algorithm. Number of grid points along spatial coordinate x must be greater or equal to

number of used processes. Otherwise there will be a lack of opportunity to distribute the data

among the processors. We assume that the best parallel performance can be achieved in case of

uniform domain decomposition when number of grid points along x can be divisible by a number

of used processes. In the next section we present benchmarks of the proposed algorithm.

Algorithm 1 Operations performed by each process

1: for i ∈ X do

2: Compute S(fn(xi; v1 . . . , vM )) at xi along v . Requires O
(
NRM logM

p

)
operations

3: end for

4: Exchange data with left and right neighbors

5: and assign boundary conditions . Each process sends and receives 2M elements

6: for i ∈ X do . loop among grid points corresponding to process

7: for j ∈ V do

8: Apply advection operator A(fn(xi; vj)) . Requires O
(
NM
p

)
operations

9: end for

10: end for

11: for i ∈ X do . loop among grid points corresponding to process

12: for j ∈ V do

13: fn+1(xi; vj) = fn(xi; vj) + ∆t · ( S(fn(xi; vj)) +A(fn(xi; vj)) ) . Requires O
(
NM
p

)

operations

14: end for

15: end for

16: return fn+1(xi; vj) . defined for X × (v1, . . . , vM )

3. Benchmarking Parallel Implementation

In our numerical tests we investigated the Cauchy problem for the advection-coagulation

equation with zero-value initial conditions and the following left boundary condition:

f(t, x = 0, v) = e−v
2

. (3)

Thus, we model a constant flow of particles from one side of the grid to the other.

Also, calculations differ with respect to coagulation kernels. Tests were conducted for con-

stant kernel

K(u, v) ≡ 1,

which rank R = 1 and for ballistic coagulation kernel

K(u, v) = (u
1

3 + v
1

3 )2
√

1

u
+

1

v

with greater values of ranks. Grid parameters were set as ∆x = ∆v = 10−2 and ∆t = 0.005.

Scalability of parallel implementation was tested on several different computing clusters, so

we assume that the results are robust. Moreover, our calculations also differ with respect to

mesh and coagulation kernel. Surprisingly, even for a system with slow interconnect (see Tab. 4
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Figure 2. Strong scalability of the proposed parallel algorithm for different clusters. Visualized

data corresponds to results presented in Tab. 1 – 4. We obtain almost linear speedup if number

of processors is less than or equal to 128

Table 1. Supercomputer Lomonosov, tests for regular4

partition with 40 Gb/s QDR interconnect. Constant

coagulation kernel, R = 1, N = M = 8192, 32

time-integration steps

p Time, s Speedup

1 34.476 1

2 17.468 1.97

4 9.126 3.778

8 5.124 6.728

16 2.576 13.384

32 1.306 26.398

64 0.66 52.236

128 0.342 100.807

256 0.185 186.357

512 0.11 313.418

with results at Supermicro cluster of Skoltech 1 Gb/s Ethernet) and for heterogeneous cluster

of Marchuk Institute of Numerical Mathematics (see Tab. 2) we obtain a reasonable speedup

of calculations. Besides the fact that we obtain a good scalability of the algorithm for different

clusters, we also see its good performance for different problem sizes (for each of Tab. 1 – 4 we

tried a different problem size).

Tables 1 – 4 and Fig. 2 indicate that the scalability of parallel program is almost linear

at the amount of nodes per dimension lower than or equal to 128. If the number of processors

goes beyond that number, the payoffs from parallel implementation slowly decrease due to
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Table 2. Cluster of Marchuk Institute of Numerical

Mathematics RAS; test for heterogeneous cluster consisting

of many different models of CPUs with 32 Gb/s QDR

interconnect. Ballistic coagulation kernel, R = 12,

N = M = 2048, 32 time-integration steps

p Time, s Speedup

1 133.43 1

2 66.112 2.018

4 34.49 3.869

8 17.775 7.507

16 8.997 14.83

32 4.618 28.893

64 2.353 56.706

128 1.227 108.745

256 0.943 141.495

Table 3. Pardus cluster of Skoltech with 56 Gb/s FDR

interconnect. Ballistic coagulation kernel, R = 14,

N = M = 4992, 32 time-integration steps

p Time, s Speedup

1 1202.947 1

2 604.34 1.99

4 301.304 3.992

8 152.223 7.903

16 78.681 15.289

32 40.3 29.85

64 20.175 59.626

128 9.848 122.151
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Table 4. Supermicro cluster of Skoltech with 1 Gb/s

Ethernet interconnect. Ballistic coagulation kernel, R = 14,

N = M = 8064, 32 time-integration steps

p Time, s Speedup

1 2373.189 1

2 1168.678 2.03

4 601.246 3.947

8 318.474 7.452

16 168.127 14.115

32 85.922 27.62

64 42.952 55.252

128 23.838 99.555

increasing costs of data exchanges between processors after each time integration step. Speedup

also saturates with satisfactory results when the size of problems is not large enough (see Tab. 2).

Conclusions

In this work we propose a parallel implementation of the numerical method solving

advection-coagulation equation from work [28]. The numerical scheme is parallelized along spa-

tial axis x which promotes a good speedup of calculations. In the presented benchmarks we

show that our scheme of finding the numerical solution of the problem might be accelerated by

hundreds of times giving an almost linear speedup with respect to the amount of used CPU

cores.

There is also an opportunity for additional increase of performance of the presented method.

As far as coalescence integrals are evaluated sequentially at each processor their calculation can

be additionally accelerated by use of GPU and Cuda technology. We will apply our ideas to

more intricate multicomponent coagulation models [7, 15, 23] requiring special implementations

of multidimensional convolutions based on utilization of low-rank tensor decompositions [15, 21].
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