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The resurgence of machine learning since the late 1990s has been enabled by significant ad-

vances in computing performance and the growth of big data. The ability of these algorithms

to detect complex patterns in data which are extremely difficult to achieve manually, helps to

produce effective predictive models. Whilst computer architects have been accelerating the per-

formance of machine learning algorithms with GPUs and custom hardware, there have been few

implementations leveraging these algorithms to improve the computer system performance. The

work that has been conducted, however, has produced considerably promising results.

The purpose of this paper is to serve as a foundational base and guide to future computer

architecture research seeking to make use of machine learning models for improving system ef-

ficiency. We describe a method that highlights when, why, and how to utilize machine learning

models for improving system performance and provide a relevant example showcasing the effec-

tiveness of applying machine learning in computer architecture. We describe a process of data

generation every execution quantum and parameter engineering. This is followed by a survey of a

set of popular machine learning models. We discuss their strengths and weaknesses and provide

an evaluation of implementations for the purpose of creating a workload performance predictor

for different core types in an x86 processor. The predictions can then be exploited by a sched-

uler for heterogeneous processors to improve the system throughput. The algorithms of focus are

stochastic gradient descent based linear regression, decision trees, random forests, artificial neural

networks, and k-nearest neighbors.

Keywords: machine learning, computer architecture, data science, parameter engineering, per-

formance prediction, scheduling.

Introduction

Thanks to the increasing amounts of processing power and data generation over the last

decade, there have been impressive machine learning applications in computer vision and natu-

ral language processing [11], gaming [16], and content recommendation systems [13] to name a

few. The growth of data, use cases, and increasing popularity have triggered a rise of frameworks,

which allow easier implementations of machine learning models which can run on commodity

GPUs without developers having to build the models from scratch. A couple of popular frame-

works include TensorFlow [1] and Caffe [8].

The rising popularity of machine learning and desire to perform larger and faster compu-

tations has encouraged the development of hardware accelerators [15] that can compete with

GPUs while consuming much less energy especially for deep convolution networks (CNNs) [20].

Computer architects have focused so rigorously on specialized hardware for machine learning

that as of yet, there has been limited research making use of machine learning algorithms to

improve computer performance.
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However, the few works that have done so in the areas of CPU scheduling [18, 19], cache

replacement [10, 25], and branch prediction [9] have shown tremendous promise. These are but a

few of the opportunities we foresee where machine learning could provide a significant advantage

towards improving the efficiency of computer systems.

The goal of this work is to incentivize and provide a general guide to computer architects for

applying machine learning to improve system performance. We describe a method that highlights

when, why, and how to utilize machine learning models for improving system performance

and provide a case study showcasing the effectiveness of applying machine learning to predict

workload performance on an x86 core at the execution quantum granularity. The predictors can

take input data gathered from different core types therefore acting as a cross core type predictor.

The predictions can then be exploited by a scheduler for heterogeneous CMPs to improve system

throughput. The machine learning algorithms within the scope of this work include stochastic

gradient descent based linear regression, decision trees, random forests, artificial neural networks,

and k-nearest neighbors.

The outline consists of firstly defining a problem (Section 1) which includes the overarching

goals, constraints, and important attributes. This is followed by an exploration into how to

understanding the data that can be generated, and whether a non linear prediction model

is needed (Section 2). If so, then machine learning algorithms can be identified, trained, fine

tuned, evaluated and integrated into a overarching solution (Section 3).5 Prior to the conclusion,

Section 4 explores related work and useful references for applying machine learning to computer

architecture.

1. Clarifying a Computer Architecture Problem for Machine

Learning

Conducting an exploratory analysis of a target system, workloads, and improvement goals

is the first step in clarifying if and how machine learning can be utilized within the scope of the

problem. As computer architects, we seek to improve the efficiency and performance of computer

systems, therefore it is important to identify the components and metrics that characterize the

system and improvement goals such as instructions per cycle (IPC), latencies (cycles or seconds),

or energy consumed (Joules). Different target systems will generally have different constraints.

For example, the specific metrics that define the improvement goals of a distributed datacenter

(e.g., response time as a metric) may differ from those for improving a system on a chip (e.g.,

millions of instructions per second or MIPS) or graphical processing unit (e.g., floating point

operations per second or FLOPS). Moreover, even when the metrics are the same (e.g., power

requirements in Watts), the solutions may target components at different scales (e.g., circuit

level - RTL design, microarchitecture - instruction window width, SoC level - cache/memory

organization, and cluster level - interconnection layout and distribution of tasks). Identifying

the target workloads (e.g., computational, memory, and/or I/O intensive) that will be executed

is also useful for determining the expected behaviors of the components and whether system

modifications are likely to translate into significant performance benefits.

Before deciding to apply machine learning, it is often useful to ask what additional knowledge

would help improve the main components of interest in a computer system. In other words, which

5The full code complementing this work can be found at: https://github.com/dnemirov/ml computer

architecture.
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metrics that characterize the runtime behavior of a system and its components are valuable to

know a priori. For example, if we are looking to improve the efficiency of a cache, it may be

useful to know the access patterns and adapt the cache accordingly.

Predictors can provide additional knowledge about runtime behavior, but they should be

complemented by mechanisms that transform the extra knowledge into system improvements.

Viable predictor implementations should be assessed based on their accuracy, overheads, and

feasibility of the mechanism that will exploit the prediction. It is also beneficial to analyze how

different prediction accuracies can affect system improvements and overheads.

Though conventional branch predictors are typically not based on machine learning algo-

rithms, the example is illuminative. It highlights how a prediction method relies not only on

a predictor, but also a mechanism to exploit the predicted value and to handle inaccuracies.

Branch prediction uses a predictor to estimate the outcomes of conditional branches. It takes an

input (e.g., a branch instruction) and based on its prediction algorithm (e.g., 2-bit saturating

counter [27]), produces an output (e.g., taken or not taken). Due to the latency constraints of

how long it takes to make a prediction, branch predictors are generally implemented in hardware.

The prediction is exploited by a mechanism in the microarchitecture which allows the processor

to continue to execute instructions and roll back the execution state in case of a misprediction

(at the cost of precious execution cycles). Depending on the constraints, the predictors and the

mechanisms that exploit the predictions can be implemented in software and/or hardware.

Separately, CPU scheduling on a heterogeneous chip multiprocessor (CMP) can benefit

from knowing a priori knowledge about how each software thread will perform on the different

hardware cores. The metric in this case is not based on a binary classification as in the branch

predictor, but instead can use the number of instructions per cycle (IPC) as a metric to gauge

performance and system throughput. In this work, we will focus on understanding when and

how to utilize machine learning algorithms to improve system performance. Specifically, the

next sections present a case study of utilizing machine learning algorithms to improve system

performance by focusing on predicting workload performance in IPC based on data collected

every execution quantum (1ms).

2. Understanding Data

After specifying a problem by identifying the target system, workloads, and performance

metrics, it is important to identify what available data is available and how it can be collected.

The data that will be generated is dependent upon the simulation framework that will be used

to conduct the execution experiments.

2.1. Simulation Framework

For this work, we utilize the Sniper [3] simulation platform. Sniper is a popular hardware-

validated parallel x86-64 multicore simulator capable of executing multithreaded applications as

well as running multiple programs concurrently. The simulator can be configured to run both

homogeneous and heterogeneous multicore architectures and uses the interval core model to

obtain performance results.

We have set up the Sniper simulation framework to simulate a commodity x86 Nehalem

processor (specifics detailed in Tab. 1). To model how the system performs under a variety of
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computational intensive target workloads, the simulation executes applications from two different

benchmark suites, SPEC2006 [7] and SPLASH-2 [26].

The SPEC2006 benchmark suite is an industry-standardized, CPU-intensive benchmark

suite, stressing a system’s processor and memory subsystem. The SPLASH-2 benchmark suite

is composed of a mix of different multithreaded kernels and applications focusing on high per-

formance computing, graphics, and signal processing. The entirety of the benchmark suites (26

SPEC2006 and 13 SPLASH-2 workloads) are used with the exception of those which did not

compile in our platform (dealII, sphinx3, volrend, and wrf ).

Table 1. Simulated CPU configuration

Architecture x86 Nehalem based

Frequency 2.66 GHz

Out of Order 4-wide issue width, 12-stage out-of-order, 128-entry ROB,

and 48-entry LD/ST queue

L1 caches Separate instruction and data 32KB write-through, 4-cycle

latency, 8-way set associative, LRU replacement

L2 cache Unified 256KB write-back, 8-cycle latency, 8-way set asso-

ciative, LRU replacement

L3 cache 4MB, write-back, 30 cycle latency, 16-way set associative

Memory Modeling all queues and delays, 120 cycle latency, controller

bandwidth 7.6 GB/s

2.2. Data Generation

System simulators provide increased design flexibility compared to physical devices while

offering detailed insights into runtime behaviors. An added benefit of using Sniper is the ability to

output the statistics of different runtime behaviors (hereinafter referred to as attributes). Some

of the statistics of interest include the number of micro operations (uops), branch prediction

results, and cache and TLB accesses and misses. We have configured Sniper to periodically

output a set of statistics that is generalized into nine ratio based attributes plus one IPC target

value shown in Tab. 2. Generalizing the input attributes to the predictors enables predicting a

workload’s performance on a certain core type while possibly using input from executions on

a different core type but with the same ISA. For example, to predict how a thread currently

executing on a large core will perform on a small core, the attribute values collected during the

previous execution quantum on the large core are generalized into ratios and provided as input

to the predictor for small core which outputs an estimated IPC on the small core. Ratio based

attributes are also useful for conducting a system analysis based on the predictions for synthetic

workloads that have different ratio values for the attributes.

Each workload from both benchmark suites is executed on the simulated x86 processor, and

the attributes are collected every execution quantum until the workload finishes. The amount

of time needed to finish executing the workloads varies and as a result, the total data collected

averaged to about 550 samples per workload and a total of 21,441 samples for all 39 workloads.

A General Guide to Applying Machine Learning to Computer Architecture

98 Supercomputing Frontiers and Innovations



2.3. Data Division

Before conducting any further data analysis, it is important to separate the data into a

train set which we can poke into and analyze and a separate test set that will be used to

evaluate the final models. Exploring the complete data without separating it into a train and

test set biases any analysis due to a priori knowledge about the test set. A common technique

is to set aside between 70%-80% of the data for the train set and 20%-30% for the test set.

However, as described above, the two benchmark suites not only contain a different amount

of individual benchmarks (26 SPEC2006 vs 13 SPLASH-2), but the completion times vary

between the benchmarks as well. This results in different quantities of data samples available

for each benchmark. As an additional measure to guard against biasing the training for the test

set, instead of combining all the samples from all workloads into on large data set and then

separating it into train and test sets, we separate the workloads themselves into different data

sets. Therefore, the train set consists of roughly 70% or 19 benchmarks from SPEC2006 and

70% or 10 benchmarks from SPLASH-2. That leaves 7 SPEC2006 and 3 SPLASH-2 workloads

for the test set. There are numerous possible combinations of which benchmarks to select for the

train and test sets. To account for this, we train and evaluate the machine learning model 1000

different times each using a different combinations of benchmarks for the train and test sets

chosen at random. The evaluation results in Section 3.3 are based on the averages and standard

deviation of the 1,000 different train and test error results.

Another method for accounting for benchmark idiosyncrasies could be using an equal number

of samples from each of the workloads in the train set during the learning phase. However, this

would affect how representative the train set will be of the amount of time the system is executing

the target workloads. It is important to note that any transformation on the train set such as

normalization is also performed on the test set.

2.4. Data Exploration

Exploring the data requires a mix of domain knowledge and utilizing several techniques

with which to understand the distribution attributes and their relation to one another. Based

on computer architecture domain knowledge, we can deduce that certain of the attributes may be

highly correlated (e.g., IPC and L3 miss rate). Cleaning the data sets ensures that the amount of

memory and computational overheads needed to work with the data sets is condensed. Removing

noisy and/or redundant attributes can also be useful for reducing errors in our predictors later

on.

A useful approach is to plot the Pearson correlations between the attributes in the train

data set as is shown in Fig. 1. The darker red represents a higher positive correlation and the

deeper blue represents a strong negative correlation. Confirming our intuition, there are several

attributes that are highly correlated with one another including percentage of branch operations

and the branch miss rate, as well as the miss rates of the caches. If any pair of attributes is

highly correlated (say a threshold of > 0.9), it may be beneficial for the model efficiency to either

remove one of the pairs or combine both attributes onto a single new attribute. A comparison

can then be made using a model trained with all of the attributes compared to one trained

with a reduced attribute set. In this work, the attributes do not seem to exhibit extremely high

correlation (> 0.9) so we keep all the attributes for training.
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Training and evaluating a simple linear regression model using IPC and each of the attributes

independently can provide baseline error measurements and indicate whether it may be useful

to apply non linear machine learning algorithms.

Figure 1. Pearson correlation heatmap of the attributes. The values of the attributes are based

on ratio percentages (e.g., uopFP is the percentage of micro operations that are floating point)

Figure 2 shows the linear regression predictors based on the L3 miss rate attribute which

has the closest correlation with the IPC. The plot visualizes how the prediction line is not able

to capture the non-linear relationship of the training data and target value for even the most

correlated attribute. This observation is highlighted in Tab. 2 which presents the root mean

square error (RMSE) on the training set for each of the separate linear models trained using

an individual attribute as the input x and the IPC as the target y. The resulting errors are

considerable given that they are around 0.7 and that the average IPC range is between 0 and 4.

This reveals that there is an opportunity for improvement using machine learning predictors.

Visualizing the distributions of the attributes in the train data set can provide additional

insights into range of values for the attributes. The histograms of the IPC, L3 cache miss rate,

branch misprediction rate, and percentage FP uops are plotted in Fig. 3. We can observe that

(i) there are disproportionately more occurrences within a particular range of values for each

of these attributes, (ii) the values of the attributes are in significantly different scales, and

(iii) a majority of the distributions have long tails. Such varied scales and distributions make

it harder for most machine learning algorithms to learn effectively. Therefore, we can utilize

standardization techniques to transform the scale and distribution of these attributes and make

detecting patterns and relationships easier for the machine learning algorithms. A method to

do this is to subtract the mean value then divide by the variance, therefore transforming the

values of the features to have a zero mean and unit variance (X−µ
σ ). This does not bound values

to a specific range and is able to deal with outliers in a manner which other methods such as

min-max scaling cannot.
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Figure 2. Scatter plot of L3 miss rate vs IPC from the training data set. Also plotted is the

single-attribute (L3 miss rate) based linear regression prediction line in blue

Table 2. Runtime attributes expressed as ratio values

collected each 1ms execution quantum. Also shows each

attribute’s correlation with target IPC and the RMSE of

the predictions against the training data set using simple

linear regression

Attribute Correlation

with IPC

Linear reg

RMSE

% uopLD -0.1538 0.7414

% uopST 0.0176 0.7502

% uopBR -0.0077 0.7503

% uopFP 0.1157 0.7453

% uopGeneric -0.0700 0.7485

BR miss % -0.2399 0.7284

DL1 miss % -0.4599 0.6663

L2 miss % -0.5172 0.6422

L3 miss % -0.5527 0.6253

3. A Case Study in Applying Machine Learning to Solve

Computer Architecture Problems

Given that simple linear models leave much to be desired in terms of prediction error, it

is a reasonable next step to see if machine learning based predictors can do better and by

how much. This section demonstrates how to utilize machine learning algorithms with the data

that has been generated, cleaned, and normalized to create predictors capable of estimating the
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Figure 3. Histograms of the attributes branch misprediction rate, IPC, L3 miss rate, and per-

centage of FP uops. The y axis values are based on the quantity of instances from a total of over

13,000 samples which fall into the attribute range in the x axis

performance (measured in IPC) of a workload on an x86 core during an execution quantum. The

goal of the predictor is to achieve low error and be able to predict using input data collected

from executions on different core types. This enables cross core workload performance prediction

which can be useful for a scheduler to improve system throughput. We analyze a set of popular

machine learning algorithms, fine tune their learning and architectures, and lastly evaluate the

final predictor errors.

3.1. Machine Learning Algorithms

In contrast to unsupervised learning which is useful for finding patterns in unstructured

data, supervised training allows a machine learning model to learn to predict classes or values

based on minimizing a loss function that quantifies the error between the predicted values and

the target values. Since the data we have collected is labelled (i.e., the target IPC values are

available in the data sets), we will focus on supervised machine learning methods. Moreover,

since IPC is a continuous and not a categorical value, the machine learning models of interest

are regressors, meaning they predict a continuous numerical value and not a class. Other areas in

computer architecture may require the prediction of classes such as the case of branch prediction

(i.e., a binary classification prediction of either branch taken or not taken).

The machine learning algorithms within the scope of this work are linear regression us-

ing stochastic gradient descent (SGD), decision trees, random forests, artificial neural networks

(ANNs), and k -nearest neighbors (kNN). The computational cost and prediction ability of the
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machine learning algorithms is regulated through hyperparameters which define the architecture

of the specific algorithms. An overview of each of these algorithms and their hyperparameters

is described below. All models are implemented using the Scikit-Learn Python framework [21]

which offers a powerful toolbox of machine learning algorithms as well as preprocessing (e.g.,

normalization methods) and fine tuning methods (e.g., cross-validation and grid search meth-

ods). Implementations for production purposes requiring strict timing constraints could instead

implement the algorithms directly in a lower level language (e.g., C) and rely on hardware

acceleration to reduce training and prediction latency.

3.1.1. Linear Regression Using Stochastic Gradient dDescent (SGD)

Stochastic gradient descent (SGD) is useful machine learning alternative for finding a linear

model without having to utilize the normal equation which does not scale well with large data

sets since it requires inverting an input matrix which carries a complexity of O(n2.3) to O(n3).

This algorithm finds a linear function (e.g., f(x) = w0+w1x1+w2x2+ ...+wnxn) that uses SGD

for training to learn the set of weights w1...n that should be multiplied to every input parameter

x1...n and bias term w0. It is straightforward to implement and generally provides low variance

but high error (i.e., bias), especially when used to approximate non linear functions. This model

will use SGD to approximate a linear equation using all nine of the attributes plus an intercept

term.

During training, the model predicts an output for every sample from the train dataset and

compares it to the target value using a loss function. The result of the loss function is what the

algorithm will try to minimize at every step of the training. Though we calculate the loss for

every sample, the weights can be updated after every sample chosen randomly from the training

data set (SGD), after calculating the sum of the losses for a subset of the total train data set

(mini batch), or after calculating the sum of the losses for the entire train data set (full batch).

Here we utilize SGD to update the weights.

For regression, we use the mean squared error loss function MSE = 1
m

∑m
i=1(yi− ŷi)2, where

m is the number of samples in the training batch, yi is the target IPC value, and the predicted

IPC value is ŷi = w0+w1x1+w2x2+...+wnxn. To update the weights, the partial derivative of the

loss function with respect to the weight is multiplied with a learning rate hyperparameter α and

then added to the old weight value. This is represented by the formula w
(new)
i = wi +α ∗ ∂MSE

∂wi
.

The learning rate may be either static (e.g., α = 0.01) or dynamically adjustable as is the case

with momentum optimization [22]. The learning terminates when the algorithm converges to a

minimum loss. This is always the case when using the MSE loss function for linear regression

since it is a convex function. To prevent overfitting, especially for high dimensional training

data sets, it is useful to add L1 (β
∑
w2
j ) and/or L2 (β

∑ | wj |) regularization terms to the loss

function to constrain the weights. Once trained, this linear model can be then used to make

predictions by simply computing a weighed sum of the input parameters and a bias term. The

principal hyperparameters of this model are the polynomial degree of the inputs, L1 and L2

regularization terms, loss function, and learning rate.

3.1.2. Decision Trees

Decision trees are able to predict a target value by inferring rules from the data features and

creating a binary tree to express the model. A benefit of decision trees is that they do not require
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the data to be normalized before training or predicting, thus reducing the amount of preparation

time. The algorithm builds a binary tree node by node by focusing on a single attribute k and

a threshold value for that attribute tk at a time. The algorithm relies on splitting the training

data set by using a loss function J which minimizes the MSE, J(k, tk) = mleft

m MSEleft +
mright

m MSEright. A node’s MSE value is calculated by using the predicted value, ŷ is based on

averaging the target y value for all m instances belonging to that node.

Decision trees are simple to build and interpret. They also make it possible to rank the

feature importances based on how close they are to the root of the tree (i.e., node depth).

However, they are sensitive to rotations and small variations in the training data set which are

aligned along non-orthogonal decision boundaries. Decision trees are non-parametric and also

tend to overfit the training data set if left unconstrained during the construction of the binary

tree. Reducing the degrees of freedom helps to reduce overfitting at the cost of increased error.

A few interesting hyperparameters to help regularize the decision tree is setting its maximum

depth and number of leaf nodes as well as the minimum number of instances a leaf or node must

contain to split.

3.1.3. Random Forests

Random forests are an ensemble of shallow decision trees (i.e., estimators), each of which

is trained on different random subset of the training data set and attributes. The technique

for random sampling of the training data using replacement is known as bagging [2]. For this

work, the random subsets are chosen using the random patches [14] technique which applies

the bagging method to both training data and attributes. The output prediction of the random

forest is the average of the predictions from all of the estimators. The increased diversity of the

subsets and estimators results in larger individual bias (i.e., error) of each estimator but less

variance overall than a single decision tree. This approach generally yields a better model than

using a single decision tree except when features are highly correlated. It also tends to overfit if

not adequately constrained. Random forests enable ranking feature importances by computing

the average tree depth of a feature in all estimators. Their hyperparameters include many of

those of the decision tree as well as the number of small decision trees estimators to use.

3.1.4. Artificial Neural Networks (ANNs)

ANN is a popular learning algorithm that is used to learn a non-linear function f(x) = y

through the use of training on an input set x and a target y. The relationships learned by the

ANNs are often hard to identify and program manually, yet they can be lightweight and flexible

to implement. They are capable of approximating complex non-linear functions and computing

predictions quickly, but deep ANNs are also prone to overfitting the training data set.

An ANN consists of a set of input attributes (also known as input parameters) x1, x2, ..., xd
of d dimensions. In the fully-feedforward ANN that is implemented, all of these inputs are

connected to every unit in the first hidden layer of the ANN, the outputs of each layer then

connect to all the units of the next layer and so on in unidirectional fashion. Each input xi is

assigned a numerical weight wi,j for its connection to unit j. The sum of all incoming connections

to a unit multiplied by their corresponding weight is then performed (zj =
∑d
i=1 xi ∗ wi,j) before

being passed into the unit’s non-linear activate function h(zj). The activate function used in

this work is the rectified linear (ReLU) function expressed as h(z) = max(0, z). ReLU is fast to
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compute and does not have a maximum saturation such as sigmoid or the hyperbolic tangent

function which helps in reducing vanishing gradients during backpropagation (discussed below).

The output of the activate function from the units from the lth layer is fed to the input of

the units of the (l + 1)th layer. The final prediction is based on the outputs from all the units

of the last hidden layer without passing through the activation function. The weights of the

ANN are randomly initialized using Glorot initialization [5] from a uniform distribution between

+/−
√

6
ninputs+noutputs

.

To train an ANN, the backpropagation algorithm is utilized which defines a method to

propagate the gradient of the loss function with respect to the ANN weights backwards from

the final layer to the first. To update the weights, these partial derivatives, which represent

the slope of the loss function with resect to the weights, are multiplied by the learning rate

hyperparameter α and then added to the old weight value. This is represented by the formula

wi,j = wi,j + α ∗ ∂MSE
∂wi,j

. Similar to linear regression using SGD, we can utilize stochastic, mini

batch, or full batch gradient descent to update the weights L1 and L2 regularization to reduce

overfitting. Learning terminates upon convergence (when the partial derivatives have zero slope),

after a given number of training epochs (an epoch is a full training pass over all batch iterations),

or when the loss function of a validation set (discussed below) starts to steadily increase. The

main ANN hyperparameters are the number of units, number of layers, activation function, loss

function, batch size, regularization terms, and learning rate.

3.1.5. k-Nearest Neighbors (kNN)

The kNN algorithm predicts the IPC value for a new instance by firstly comparing its

distance to all available data points and identifying the k -nearest data point neighbors. It then

outputs the average of the IPC value of the k nearest data points as its prediction for the

new instance. The distance formula used can vary (in this work the Euclidean one is used),

but the dimensions of the inputs correspond to the number of attributes of the data points.

The neighbors can be weighed either uniformly or by their distance to the new instance. The

hyperparameter k acts to regularize the algorithm with a higher value generally reducing noise.

Typically the kNN algorithm is one of the most straightforward machine learning methods to

understand and implement. It is also advantageous because the algorithm is non-parameterized

(i.e., does not make assumptions on the input data probability distribution) and easily adapts

to changes in new data. The main drawbacks include prediction computation cost as well as its

sensitivity to localized anomalies and biases. kNN is a lazy learning technique meaning that the

computation is done at prediction time as opposed to training. To predict for a new instance,

the algorithm must compute the distances of the new instance with all existing data points to

find the nearest k neighbors.

3.1.6. Overheads

When deciding upon a model to implement to help solve a specific problem, it is critical

to compare their overheads and see if they fall within the given problem’s constraints. This is

especially the case in computer architecture where even minimal latency and memory overheads

may outweigh the benefits of a proposed solution.

Tab. 3 compares the computational and memory complexities for the different machine

learning models. The training computational complexity is generally higher than when predicting
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Table 3. Complexity overheads of machine learning models

Model Training Predicting Memory Notes

SGD linear

regression

O(ndi) O(d) O(d) Where n is #training

samples, d is #input

dimensions (attributes),

and i is #iterations.

Decision

tree

O(nd log(d)) O(log(d)) O(log(d)) n and d same as SGD.

Random

forest

O(tnd log(d)) O(t log(d)) O(t log(d)) Where t is #of decision

tree estimators. Both n

and d are typically sub-

sets.

ANN O(nedu)) O(du) O(du) Where e is #training

epochs, and u is the to-

tal # units.

kNN - O(nd + nk) O(nd) Where k is #neighbors.

because the algorithms tend to perform several sequential iterations over the learning data set

in order to reduce the loss function. As a greedy algorithm, however, kNN does not require to be

trained to compute a prediction hence it has no training computational complexity. Conversely,

kNN requires large prediction computational and memory complexity since it needs to calculate

the distance between the new instance with all previous data points.

The computations for training and prediction are floating point arithmetic operations and

the memory complexity represent the amount of data that needs to be stored and loaded. For

example, an ANN composed of 11 input parameters, two hidden layers of 6 units and one

output unit consists of about (11 + 1) ∗ 6 + (6 + 1) ∗ 6 + (6 + 1) ∗ 1) = 121 floating point

(FP) weights (the +1 is due to the bias term) needed to be stored and loaded. The amount

of FP computations needed to be performed at each layer l of the ANN consists of a set of

FP multiplication and addition operations, FPopsl = dlul + (dl − 1)ul, can be separated into

multiplication and addition FP ops. In this case, dl is the input dimension to the lth layer, and

ul is the number of units in the lth layer of the ANN. The computations needed for each ANN

prediction is (12 ∗ 6 + 11 ∗ 6) + (7 ∗ 6 + 6 ∗ 6) + (7 ∗ 1 + 6 ∗ 1) = 199 FP ops. It is up to the

architect to analyze whether these computations and memory footprints can be handled in an

efficient manner so as to keep the overheads within the constraints.

3.2. Model Validation and Fine Tuning

In order to fine tune an algorithm’s hyperparameters, it is useful to determine whether

it suffers from high bias (i.e., prediction error) and/or high variance (i.e., overfitting) when

predicting for the training data set and for the testing data set. A useful performance measure

often utilized for evaluating regression problems is root mean squared error (RMSE). It provides

a measure of the standard deviation of the prediction errors, and for normally distributed errors

approximately 68% of the errors will fall within the RMSE value.
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However, adjusting the hyperparameters based on how the algorithm predicts for the test

data set will bias the training for the test data set. To make sure the testing data set is used for

a final unbiased evaluation of the algorithms, the evaluation for fine tuning the models is made

using a separate validation data set.

The validation data set is a random subset of the training data set that is kept aside (i.e.,

not used during the training phase) to evaluate the bias and variance of the algorithms. A more

sophisticated and balanced validation method that is capable of using all of the training data for

both training and evaluation is known as k-fold cross-validation. This method randomly splits

the training data set into k subsets called folds. A model is then trained k times using a different

evaluation fold each time and training using the remaining k− 1 folds. For example, to train an

ANN using 5-fold cross validation, the training data set will be divided into 5 folds (i.e., 5 data

subsets each containing 20% of the total instances in the training data set). The ANN model

will be trained 5 different times, each time using a different fold for evaluation and the other

four folds for training. The final k evaluation errors can be averaged to produce a single value

and additionally provide a standard deviation precision measurement.

To fine tune a model, k -fold cross-validation can be combined with a hyperparameter grid

search technique. The validation curves illustrate how different hyperparameter values affect a

model’s training and validation errors. Deciding on a hyperparameter value using the validation

curves is intuitive since the validation error curve will tend to decrease as the model becomes

more powerful, but then increase at the point where the model complexity increases to the point

of it overfitting. For example, based on the validation curve of the ANN in Fig. 4, the model

chosen has 1 hidden layer of 100 hidden units. As is shown in the validation curve in Fig. 5,

the kNN prediction error increases significantly after around k = 5. The hyperparameters of the

other models were chosen using a similar grid search and validation curve analyses.

Figure 4. Validation curve of the ANN. The x axis ticks represent different models having

(#hidden units, #hidden layers)

Once a set of hyperparameters for a model is chosen, it is useful to plot the learning curves,

which visualize how the training and validation errors change as the model learns with more and
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more of the training data. The learning curve for the SGD linear regression model is shown in

Fig. 6. The shaded regions around the darker lines represent the standard deviations of the errors

from the different cross-validation folds. Apparent from the figure is that as more train data is

used during the training phase, the error decreases for the validation data set, but increases for

the training data set. The standard deviations are also considerable due to the large variations

between the instances and poor ability of the model to capture non linearities.

Figure 5. Validation curve of the kNN model. The x axis ticks represent values for k

Figure 6. Learning curve of the SGD linear regression model. As the model is able to train using

more data, the error decreases for the validation data set but increases for the training data set

Generally, the training error will increase as the number of instances for training increases,

though it will tend to settle lower than the validation error. The bias depends upon how much
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error (i.e., how high on the y axis) the training error settles at, and the variance depends upon the

gap between the training and validation curves. Greater bias indicate more error and greater

variance denotes that the model has probably overfit to the training data and will perform

significantly worse on unseen data than on the train set. A solution to high bias is to increase

the complexity of the model and the number and/or quality of attributes and data. To reduce

variance, it is often useful to simplify the model by reducing complexity or adding regularization,

remove input attributes, and increase the diversity and quantity of the data. If the right tails of

the learning curves do not settle, then adding more training data could serve to reduce the bias.

Figure 7. The feature importances of the random forest model

As mentioned previously, the decision tree and random forest algorithms are capable of

ranking the importance of the input attributes. The feature importance of the trained random

forest model is shown in Fig. 7. These relate closely to the correlations with the IPC that

were shown in Tab. 2. If further reduction of attributes is desired (e.g., to reduce overfitting

or computational or memory complexity), then feature importances will help to highlight the

attributes which are most useful. For example, we could reduce the amount of attributes from

9 to 5 by keeping only those with importance value over 0.1. Then we could train a separate

random forest model using these 5 attributes and compare the error and overhead results to

decide which to implement.

Once a preferred set of input attributes and hyperparameters is identified using the com-

bination of these techniques, a final version of the model is trained using the full training data

set.

3.3. Final Model Results

At this point, the final machine learning models are fine tuned and trained with the whole

training data set. They are ready to predict the IPC for execution quantum samples in the test

data set. Tab. 4 describes the hyperparameters of the final models and compares their errors on

the training, and test data sets. The results are based on the averages and standard deviation of

the errors after 1,000 different runs, each time with a different set of benchmarks for the train
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and test data sets. In general, the models exhibit high variance but low bias especially compared

to the single attribute linear regression predictors from Section 2.4.

Table 4. Final machine learning model results. Final

hyperparameters and root mean squared error (RMSE) for

models with original attributes and ratio transformed

attributes

Model Final hyperparame-

ters

Train error Test error Test Stdev

SGD linear re-

gression using all

9 attributes

L1 regularization 0.3954 0.5248 0.1405

Decision tree tree depth = 25, min

leaf samples = 2, min

split samples = 2

0.0255 0.6310 0.1909

Random forest num estimators = 20,

max features to evalu-

ate = 3

0.0188 0.4981 0.1567

ANN 1 hidden layer, 100 hid-

den units, 400 epochs

0.0738 0.5839 0.2127

kNN k=5, distance based

neighbor weights

≈ 0 0.5516 0.1571

The significantly larger errors and standard deviation on the test set are curious and also

indicative of high variance and could be the result of overfitting to the training set, but also

that the diversity found in the training set unlike that contained in the test data set. Fig. 8

provides a 2-D visualization comparing how the SGD linear regressor and random forest models

make their predictions as opposed to the simple single-feature linear regression model from

Section 2.4. Apparent from the figure is that the machine learning based models, especially the

random forest, tend to predict the training data exceptionally well but may also be a product

of overfitting.

The k-nearest neighbors algorithm particularly suffers from high variance with nearly zero

error on the training set and over 0.5 for the test. This is likely due to having many similar

instances in the training data set. The training instances close to the testing instances also

seemed to perform very differently which skewed the model’s prediction. The decision tree model

also exhibits significant variance between the train and test errors. This is the case even after

fine tuning the model using cross validation and a hyperparameter grid search, again due to

poor representation of the test data within the training data set.

For future models, it would be useful to gather more data from a wider set of benchmark

suites and ensure that the training data is representative of the diversity of the benchmarks that

will need to be predicted for during testing. Retraining the models as the system executes new

data, the so-called online training, can also help to reduce the variance of the model.
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Figure 8. Scatter plot of L3 miss rate vs IPC from the training data set. Also plotted are

the predictions based on the single-attribute linear regression, the multi-attribute SGD linear

regression, and the random forest

The model that has the lowest prediction error on the test set is the random forest. SGD

linear regression comes in at second, has the least variance between the train and test sets.

However, it also suffers from an order of magnitude higher training error than any other models.

In case of similar applications being frequently run on a system, the machine learning models

would be able to predict significantly better than the SGD regressor, especially if making use of

online learning. Though the random forest produces the least amount of test prediction error,

any final implementation choice will depend upon a careful comparison of the target benchmarks,

errors, and performance and space requirements.

3.4. Exploiting the Predictors

Once a final predictor has been chosen to be implemented, a mechanism must be identified

which is able to exploit the extra system knowledge and translate it into system efficiency gains.

The added knowledge gained thanks to the use of a predictor such as an ANN, is the IPC

value for a benchmark on a hardware core for an execution quantum. A useful mechanism to

exploit knowing how well workloads would perform on different core types would be a resource

manager such as a CPU scheduler for heterogeneous systems. Given that several workloads may

be running concurrently on a heterogeneous system composed of several cores of different types,

the scheduler can utilize a specific IPC predictor per core type to predict how the workloads

will perform on all other core types. The scheduler can then compare all the different possible

workload to core mapping combinations and choose the one that results in the highest system

IPC.

An implementation approach is to modify the scheduler code within the OS to collect the

attributes and also run the predictions using the trained machine learning algorithms. This is the

approach taken in [18, 19] and has been shown to produce around 30% performance improve-

ments over state-of-the-art schedulers. Other examples of machine learning predictors being
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exploited by mechanisms to improve system performance are in the area of branch prediction [9]

and cache line reusability [10, 25]. Knowledge is powerful when exploited adeptly.

4. Related Work

The application of machine learning to the field of computer architecture is currently in its

inceptive stages with the few exploratory studies showing impressive promise. Recently, there

has been pioneering studies conducted on applying machine/deep learning to CPU scheduling.

In the works [18, 19] artificial neural network performance predictors are used by the scheduler

to improve the system throughput over a Linux based scheduler by over 30%. Other approaches

to using machine/deep learning for scheduling has been to classify applications, as well as to

identify process attributes and a program’s execution history. This is the approach of [17] which

used decision trees to characterize whole programs and customize CPU time slices to reduce

application turn around time by decreasing the amount of context swaps. The work presented

in [12] studies using structural similarity accuracy values and support vector machines and linear

regression to predict thread performance on different core types at a high granularity level (1

second). In the study [6], CPU burst times of whole jobs for computational grids are estimated

using a machine learning approach. An approach that utilized machine learning for selecting

whether to execute a task on a CPU or GPU based on the size of the input data is done by

Shulga et al. [24]. Fedorova et al. [4] proposes an algorithm that uses reinforcement learning to

maximize normalized aggregate IPC. They demonstrate the need for balanced core assignment

but do not provide an implementation.

For branch prediction, Jimenez et al. [9] proposed using a perceptron based predictor in order

to improve CPU performance. Several studies have applied machine learning for the purpose

of cache management. In the work [10, 25] the authors propose perceptron learning for reuse

prediction and also present a prediction method for future reuse of cache blocks using different

types of parameters. Predicting L2 cache behavior is done using machine learning for the purpose

of adapting a process scheduler for reducing shared L2 contention in [23].

Conclusion

The revitalization of machine learning has led to a vast and diverse set of useful applications

that affect daily lives. The ability of the algorithms to learn complex non-linear relationships

between the attributes of the data and the target values has led to them being utilized as powerful

prediction models. While there has been much interest recently in accelerating machine learning

algorithms with custom hardware, there have been few applications of machine learning to

improve system performance.

The goal of this paper has been to serve as a foundational base and guide to future computer

architecture research seeking to make use of machine learning models for improving system

efficiency. We have described a process to highlight when, why, and how to utilize machine

learning models for improving system performance and provided a relevant example showcasing

the ability of machine learning based cross core IPC predictors to help enable CPU schedulers

to improve system throughput.

We have analyzed a set of popular machine learning models including stochastic gradient

descent based linear regression, decision trees, random forests, artificial neural networks, and

k-nearest neighbors. This was followed by a discussion of the algorithms’ inner workings, com-
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putational and memory complexities, and a process to fine tune and evaluate the models. After

comparing the results of the predictors, the random forest narrowly produces the lowest root

mean squared error in its testing predictions. Finally, we discussed how the predictor can be

exploited by a mechanism such as a scheduler for heterogeneous systems in order to improve the

overall system performance.

For future work, reinforcement learning may be a fruitful option to explore in using machine

learning to improve scheduling. Predicting application performance and energy consumption,

cache accesses, memory and I/O latencies, branch conditions, and interference effects between

threads are just a few examples of useful knowledge that can help to improve system performance

and energy efficiency if adequately exploited. In addition, testing the implementations on real

systems is a pragmatic approach forward that helps to validate and continue pioneer applying

machine learning to computer architecture.
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