
Adaptive Load Balancing Dashboard in Dynamic Distributed

Systems

Seyedeh Leili Mirtaheri1, Seyed Arman Fatemi2, Lucio Grandinetti3

c© The Authors 2017. This paper is published with open access at SuperFri.org

Considering the dynamic nature of new generation scientific problems, load balancing is a ne-

cessity to manage the load in an efficient manner. Load balancing systems are used to optimize the

resource consumption, maximize the throughput, minimize response time, and to prevent overload

in resources. In current research, we consider operational distributed systems with dynamic vari-

ables caused by different nature of the applications and heterogeneity of the various levels in the

system. The conducted studies indicate that many different factors should be considered to select

the load balancing algorithm, including the processing power, load transfer and communication

delay of nodes. In this work, We aim to design a dashboard that is capable of merging the load

balancing algorithms in different environments. We design an adaptive system infrastructure with

the ability to adjust various factors in the run time of a load balancing algorithm. We propose

a task and a resource allocation mechanism and further introduce a mathematical model of load

balancing process in the system. We calculate a normalized hardware score that determines the

maturity of the system according to the environmental conditions of the load balancing process.

The evaluation results confirm that the proposed method performs well and reduces the probability

of system failure.

Keywords: Load Balancing, Resource Management, Dynamic Variables, Communication De-

lay, Distributed System.

Introduction

In the next-generation high performance computing (HPC) systems, the scientific programs

are going to get more complex with unpredictable requests what requires large scale and more

powerful computing systems [3]. Distributed computing system (DCS) is a promising solution to

such demands. DCS consists of a group of computers, each of which has an independent operating

system and all are connected through a network [12]. This definition of distributed computing

systems is very general and covers all types of purposes for user resource connectivity. Users

get connected to resources to receive different facilities and services like computing, file sharing,

I/O sharing, and storage. In distributed computing systems with mission of high performance

computing, the main concern of managing resources is reaching to minimum execution time and

maximum throughput in running scientific/industrial programs [10].

In resource management framework, the load balancer is the key unit in efficient utilization

of resources and improving response time [16]. Load balancing is the distribution of load among

several computing resources such as computers, clusters, network communication lines, central

processing units, or disk drives. The advantages of the load balancing could be categorized

as: optimizing resource consumption, maximizing network throughput, reducing response time,

and preventing overload in each resource. It is known that using multiple components in load

balancing increases reliability and availability [5].

In load balancing mechanism, some parameters have direct impact in efficiency of load

balancing operation. A group of these parameters are determined by specifying the status of

nodes [1]. Practically, the nodes speed up in executing the commands and their current load are

1Department of Electrical & Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
2Kharazmi University, Tehran, Iran
3Department of Electronics, Informatics, and Systems, University of Calabria (Unical), Rende, Italy

DOI: 10.14529/jsfi170403

34 Supercomputing Frontiers and Innovations



two important factors in specifying the status of the nodes and making decision to distribute

the load based on them. It is clear that, the load balancer should migrate and transfer the extra

load from over loaded nodes to the ones that are under loaded. Another group of parameters

are related to execution of load balancing mechanism that among them specifying the start

time of load balancing mechanism is an important issue. In one-shot strategy, when extra load

is imposed in the node, the load balancing operation starts to work [11]. The third group of

parameters are related to interconnection platform status. The important effective parameter

in load balancing mechanism from these parameters is the communication delay between the

nodes.

Load balancing should not only be considered in terms of a mechanism that can improve the

computing efficiency. Load balancing is a necessity for large scale computing systems. In such

systems, the whole computation goal may fail if the load balancing is not applied in the system.

on the other-hand, predetermined variables are commonly used in decision-making algorithms

by introducing unchangeable formulas and computing algorithms. Therefore, beside efficient and

optimized algorithms for load balancing, it is important to introduce a framework dashboard

that can also adapt to variation of parameters by choosing different algorithms, dynamically.

Therefore, the two usage of load balancing systems are as follows:

1. Reducing critical points in system: In fact, using load balancing improves the system avail-

ability. If an adaptive load balancing system is used in the network and a node (hardware

or software) corrupts, no failure time is felt from the user’s side.

2. Efficient load distribution by load balancing exploits the full computational power (maxi-

mum available) of system elements.

Standard load balancing manager includes five activities: queuing, scheduling, monitoring,

resource control and accountants. As shown in Fig. 1, queuing is the first phase of load balancing

operation and in this unit the tasks are assigned by user, and the process ends by giving the

result of executed tasks to the user. The aim of these five activities is efficient matching of user-

specified workload to existing resources by keeping balance the load of the system. The standard

process of load balancing manager starts by receiving the jobs from users in queuing unit. After

placement of jobs in queues, scheduling unit is activated. Scheduling is a fundamental technique

for improving performance in computer systems. The scheduler has to balance the priorities of

each job, with the demands of other jobs, the existing system compute and storage resources,

and the governing policies dictated for their use by system administrators. Scheduler should be

able to deal with different types of jobs such as huge jobs, small jobs, real-time jobs, high-priority

jobs, dynamic jobs, static jobs and etc. The scheduler governs the order of execution based on

these independent priority assessments.

The present study aims to develop a load balancing dashboard to monitor the impact of

static and dynamic variables on the non-stop decision making process by the load balancer.

In current research, we consider distributed systems with dynamic variables. We aim to design

and model an adaptive dashboard that is capable to merge the load balancing algorithms in

different environments. We design an adaptive system infrastructure with the ability to adjust

various factors in the run time of a load balancing algorithm. We propose a task and a resource

allocation mechanism and further introduce a mathematical model of load balancing process in

the system. We calculate a normalized hardware score that determines the maturity of system

according to the environmental conditions of the load balancing process. The rest of this paper is

organized as follows: In section 1, we present the related works based on some recent researches

S.L. Mirtaheri, S.A. Fatemi, L. Grandinetti

2017, Vol. 4, No. 4 35



Figure 1. Standard load balancing manager scheme

and the investigation of Azure Load Balancing system. The effect of communication delay on

load balancing is presented in Section 2 and Section 3 includes our proposed task and resource

allocation mechanism. The mathematical model and scoring model are presented in Section 4,

and evaluation results of the proposed method are presented in Section 5. Finally, Section 6

concludes the paper.

1. Related Works

1.1. Related Researches

Research studies conducted in this area pursued specific goals. The summarized significant

goals in the literature are as follows:

1. In some of the studies, the goal is to propose new methods to improve the performance

of current algorithms for different environments. These studies investigate the performance

of the existing algorithms and proposed combined algorithms derived from the existing

ones [15]. Usually, the authors compare the response time of the proposed algorithms with

the existing ones by simulating the environment through simulation tools.

2. Some studies focus on load balancing algorithms in particular environments (such as public

clouds) [19]. Generally, this approach aims to adapt and optimize load balancing algorithms

based on the implementation variables.

3. Some researchers focus on mathematical approaches to improve the performance of load

balancing algorithms. For example, heuristic optimization and artificial intelligence tech-

niques [8].

4. Some studies focus on the scalability [13]. The scalability is related to the implementa-

tion structure. Normally, the workload of load balancing structures is not predictable (for

example, when a load balancing structure is needed for dynamic load distribution among

processors). Accordingly, the scalability may result in an adaptive load balancing system for

a larger number of environments.

Adaptive Load Balancing Dashboard in Dynamic Distributed Systems

36 Supercomputing Frontiers and Innovations



One of the main challenges of performing a load balancing process, is the right choice of

algorithm. This choice, as mentioned earlier, is influenced by many factors. A lot of studies were

conducted to find a proper algorithm. In [9] authors propose a dynamic parallel scheduling al-

gorithm for load balancing. Several strategies are proposed to distribute the load using dynamic

and distributed load balancing mechanisms, called sender-initiated and receiver-initiated strate-

gies. In the sender-initiated strategy, a portion of the load of over-loaded processor is sent to

another computing node [2]. In receiver-initiated strategy, the under-loaded processor initiates

the transaction by sending a message to other nodes [6]. In [7], authors propose a load balanc-

ing mechanism for massive parallel computations based on sparse grid combination techniques.

In [18], authors present an optimized load balancing algorithm by organizing the tasks in queues

based on task data size and location. The implemented technique is a MATRIX. However, the

portion of the load that should be transferred by forming unpredictable events in runtime is

not specified. The proposed method in [17], named Slum++, employs multiple controllers so

that each one manages a partition of computing nodes and participates in resource allocation

through resource balancing techniques. The authors propose a monitoring-based weakly consis-

tent resource stealing technique to achieve resource balancing in distributed high performance

computing. In [14], authors investigate migration of applications for high performance com-

puting by deriving respective requirements for specific field of applications. In [10], authors

consider practical parameters such as communication delay and propose an optimized dynamic

load balancing algorithm for exasclae distributed computing systems.

1.2. Related Measures

1.2.1. Azure Load Balancing

In this section we review the Azure Load Balancing (ALB) system as a successful and

practical business case as illustrated in Fig. 2. The ALB system is a load balancing service

based on the process as a Service, which provides the highest level of network performance as

well as the highest level of availability under UDP and TCP protocols. This system splits the

traffic among healthy devices in a cloud structure or among distributed virtual machines. ALB

is commonly used in the following cases:

• Splitting traffic of Internet access among virtual machines;

• Splitting traffic among virtual machines in a virtual network, among virtual machines in

a cloud service, or among virtual machines and local computers in a local interconnect

network; and

• Conducting external traffic on a specific virtual machine.

1.2.2. Required Attributes of ALB

In this section, we address the required information to register a task based on a practical

sample of Azure Load Balancing. The following information is collected from the official website

of the Ohio Super Cloud Computing Center. This website uses a batch file to allocate tasks to

servers. In fact, this is a text file containing task allocation settings. The proprietary file formats

are .job or .pbs. This file has its own structure and supports features like commenting. This

center is used to accept a specific scripting task. The required attributes to register a task are

as follows:

S.L. Mirtaheri, S.A. Fatemi, L. Grandinetti

2017, Vol. 4, No. 4 37



Figure 2. General architecture of Azure Load Balancing

1. Wall Back Time: It represents the maximum allowed runtime for Job. This attribute is

accepted in two formats: second and HH: MM: SS. This is an estimated time, and if our

work exceeds it, it will be eliminated by the system.

2. Nodes: Through this attribute, the number of nodes and node characteristics are specified.

It is also used to specify the number of processors per node or PPN, the number of GPUs

per node or GPUN, and the type of node.

3. Memory: This attribute determines the total amount of memory in all nodes. This feature

is used in special cases when requiring a high-memory node, or when there is no matching

between the number of processors in the node and requested memory.

2. Effect of Communication Delay on Load Balancing

Delay time of load transferring from the nodes with positive load (over-loaded nodes) to

nodes with negative load (under-loaded nodes) should be acceptable and reasonable. If this

amount of the transferring delay be more than the execution time of instructions in that node,

load balancer should use suitable policy such that the total time of program execution be efficient.

For example, consider a node that includes 200 task for execution and the average number of

task execution in this node is 100 tasks per second. In this situation, the load balancer of the

system makes decision to transfer 80 tasks to other node, therefore this node should execute

120 task that due to execution time of one task in this node the total time executing 120 task

will be 1.2 task/s. Now suppose that transferring time of each task to destination node is 0.02

second. In this situation, for transferring 80 tasks, 1.6 seconds is needed. Therefore, based on

this load balancing policy, the source node (the node that distribute its extra load) dont have

any task for execution at least for 0.4 second. On the other hand, the destination node also can

finish its tasks execution long before receiving these new tasks (transferred load). In both cases,

part of the capacity of the system that could be used to execute commands will be lost. This

communication delay is considered in [10]. In this research authors introduce a compensating

factor and find the optimum value based on the modeled optimization problem.

Adaptive Load Balancing Dashboard in Dynamic Distributed Systems

38 Supercomputing Frontiers and Innovations



To illustrate the effect of load transfer delay, we consider a scenario and assume that all

nodes have 300 initial tasks. The load execution speed is considered to be 200 tasks per second

for each node and 100 tasks per second are transferred from one node to another. In this scenario,

we assume that the external load is inserted to node 6 having node 4 as its sole neighbor depicted

in Fig. 3.

Figure 3. Graph of a sample distributed system model

As depicted in Fig. 4, the node 4 performs all assigned tasks at t=0.17 and is in standby

state till t=5.05 when the load from load balancing is reached to node 4. The load balancing is

performed in a way that all nodes finish their tasks together. The standby time of node 4 causes

extra delay in the system and node 4 finish its assigned tasks at t=7.13 while node 6 ends the

tasks at t=2.24. According to the definition of total exertion time, the network execution time

for assigned tasks is equal to t=7.13. So, it is obvious to compensate for this load transfer delay

and to prevent the standby time in the system [10].

0 1 2 3 4 5 6 7
Event Time (sec)

0

200

400

Lo
ad

 o
f N

od
e

Event Flow at Node: 4 in DLBSystem

Load Flow
Recieve LB Task

0 1 2 3 4 5 6 7
Event Time (sec)

0

10

20

30

Lo
ad

 o
f N

od
e

Load Flow

0 1 2 3 4 5 6 7
Event Time (sec)

0

500

1000

Lo
ad

 o
f N

od
e

Load Flow
External Load
LB
Send LB Task

t=0.17

t=2.24

t=5.05
t=7.13

Idle TIme=4.89

Node 5

Node 6

Node 4

Figure 4. Effect of load transfer delay on idle time of systems

S.L. Mirtaheri, S.A. Fatemi, L. Grandinetti

2017, Vol. 4, No. 4 39



3. Proposed Mechanism

In this section, we outline the proposed system. The innovation of proposed mechanism is

described in the following two subsections:

• Task allocation process; and

• Resource allocation process

The main procedure is depicted in Fig. 5. First the user needs to specify the resource

allocation process to prioritize tasks for execution after determining the intended user algorithm

(without the need for coding unlike the existing simulators). In the final step, the user executes

the load balancing procedure and views the results.

Figure 5. The general procedures of load balancing in the proposed system

3.1. Entities Participating in the Load Balancing Process

3.1.1. Virtual Servers

The structure of the entity in the database is depicted in Fig. 6. In simple words, each

virtual server can have one or more Hardware in this system. Each Hardware has exactly one

Hardware Type, and each Hardware Type has one Unit. This structure is used to explain how

the load balancing algorithm is implemented.

Figure 6. Conceptual model of virtual servers

3.1.2. Job/Task

The structure of task/job in the database is depicted in Fig. 7. Each job can have one or

more Hardware Type in this system, and each Hardware Type in the Job needs a consumption.

Therefore, we specify the hardware requirements for different hardware defined in system (in a

Adaptive Load Balancing Dashboard in Dynamic Distributed Systems

40 Supercomputing Frontiers and Innovations



completely dynamic manner). We also use this structure to explain how to implement the load

balancing algorithm in the following section.

Figure 7. Conceptual model of job/task

3.2. Resource Allocation Process

The proposed system can facilitate implementing the required algorithms and allocating

resources in the environment. The general approach is to enable the user to implement algo-

rithms and allocate resources without dealing with complex issues (compared to other existing

simulators, such as SimGrid [4]), by using the structures described in the following section.

3.2.1. Load Balancing and Resource Allocation Process

The load balancing and resource allocation processes are implemented in two ways that are

described separately.

Load balancing process using predetermined algorithms: In this model, the load bal-

ancing and resource allocation processes are performed using the following steps:

1. Selecting tasks (jobs) from the task list defined in the system.

2. Selecting servers from the server list defined in the system.

3. Selecting an algorithm from the following algorithms for selecting tasks.

4. Applying the settings for the resource allocation process.

5. Executing the load balancing process using predefined formulas.

In this procedure, the load balancing process is executed according to the selected settings for

all available queues of job. However, first, the tasks need to be sorted according to the selected

algorithm to form queues. Simply put, the load balancing process is fully executed for all the

job queues. After a complete execution, the load balancing process is executed for the next task

in the queue for all servers (available in the server queue) according to the server settings. This

procedure is summarized in Fig. 8.

Load balancing process using dynamic algorithms: The objective is to create a dy-

namic environment for executing load balancing algorithms according to the user requirements.

The proposed system provides the ability to implement different load balancing algorithms in

runtime through different settings applied by user. This model is depicted in Fig. 9.

4. Mathematical Model of the Proposed System

The load balancing process in proposed system, includes the following steps:

Selecting the task with the highest priority: The task with highest priority is selected

from the queue and is applied to the available servers in the queue to start the load balancing

process. Filter 1 on servers: This filter removes all servers that do not meet all the hardware

S.L. Mirtaheri, S.A. Fatemi, L. Grandinetti

2017, Vol. 4, No. 4 41



Figure 8. Load balancing process using predetermined algorithms

Figure 9. Load balancing process using dynamic algorithms

requirements. For example, if a job requires four different types of hardware, only the servers

that meet these requirements remain in the list.

virtual Server⇒
Distinct(HardwareType in Jobs) ∈ Distinct(HardwareType in VirtualServere) (1)

Filter 2 on servers: Each hardware type in each server has a total capacity called briefly the

Capacity. There is also an in-use value called In Use. For the current job, we filter all servers

with the Capacity-In-use value higher than the required value for the job.

ΛHardwareTypeVirtualServer⇒
(Capacity-Inuse) in VirtualServer > 0 Λ

(Capacity-Inuse) in VirtualServer > (Consumption) in Job (2)

Now it is time to rate servers according Capacity-In use value, which we called remain

later on. We will calculate the maximum remain for each hardware type on the servers and,

Adaptive Load Balancing Dashboard in Dynamic Distributed Systems

42 Supercomputing Frontiers and Innovations



accordingly, rate each server. That is, the specific score of a hardware type for each hardware

type available on servers is calculated as follows:

Hardware Type Score in VirtualServer =
(Capacity-Inuse) of Current Hardware Type in Current VirtualServer

max
Current Hardware Type in All VirtualServers

(Capacity-Inuse)

(3)

Given the fact that the previous approach leads to the elimination of the unit in computing,

we can calculate a server score according to the scores of different hardware types on a server

as follows:

Score of VirtualServer =
Hardware Type in VirtualServer index=i∑

n

(Capacity-Inuse) of Current Hardware Type in Current VirtualServer
max

Current Hardware Type in All VirtualServers
(Capacity-Inuse)

(4)

With regard to the score obtained for each server, we can determine the optimal server

for the job. Moreover, if the user selects dynamic variable values for participating in the load

balancing process (for each server), the values participated in the computing process according

to their data entry style in the software as follows:

Final Score of VirtualServer =
Hardware Type in VirtualServer index=i∑

n
Hardware Type Score[i]

+
Dynamic Variable in VirtualServer index=i∑

n
Dynamic Variable[i]

(5)

5. Evaluation Results

5.1. Practical Example

In this part a practical example of the execution of the load balancing process is presented.

It is assumed that, according to the settings outlined, the load balancing process is started in the

system, using both dynamic and predetermined formulas. The current job specifications (Top

job in closed queue) and the available server specifications in server queue are presented in Tab.

1 and Tab. 2, respectively.

Table 1. Job 01 Specifications

Job Name Hardware Requirements

Job 01

CPU:0.5 Hz

RAM: 3 GB

HDD: 200 MB

In the first-phase filter, SRV 02 is eliminated due to not having all hardware types required.

In the second-phase filter, SRV 01 is eliminated due to having only 1 GB 8-7 RAM hardware type

that is less than the current job required RAM hardware type, 3 GB. We now need to calculate

the server score between SRV 03 and SRV 04 servers. According to all hardware types that the

job requires, we give scores to the servers. Therefore, SRV 03 server for GPU hardware type

S.L. Mirtaheri, S.A. Fatemi, L. Grandinetti

2017, Vol. 4, No. 4 43



Table 2. Specification of Virtual Servers

Server Name
Hardware

(Capacity/In use)
Remain

Dynamic Variables

(-100<Score>100)

SRV 01

CPU: (3.2 / 2.1)

Hz

RAM: (8 / 7) GB

HDD: (500 / 100) MB

CPU: 1.1 Hz

RAM: 1 GB

HDD: 400 MB

-

SRV 02
CPU: (3.2 / 0.1) Hz

HDD: (5000 / 2500) MB

CPU: 3.1 Hz

HDD: 2500 MB
Availability: 90

SRV 03

CPU: (4.1 / 1.2)

Hz

RAM: (16 / 3) GB

HDD: (1000/ 100)

MB

GPU: (3.1 / 0.1)

CPU: 2.9 Hz

RAM: 13 GB

HDD: 900 MB

GPU: 3

Availability: -63

SRV 04

CPU: (4.1 / 1.8)

Hz

RAM: (32 / 24)

GB

HDD: (1500 / 350) MB

CPU: 2.3 Hz

RAM: 8 GB

HDD: 1150 MB

Communication Delay: 26

is not given any score, because here this hardware type is not needed. The score is calculated

between the servers remaining in the queue according to each hardware type based on that

hardware type maximum. The score for SRV 03 and SRV 04 is illustrated in Tab. 3.

Table 3. Comparing Score for SRV 03 and SRV 04

Hardware

Types In

Current Job

Maximum Remain

Between All

Hardware

Type in Servers

Score of

SRV 03

Score of

SRV 04

CPU 2.9 Hz (SRV 03) 2.9 Hz/2.9 Hz =1 2.3 Hz/2.9 Hz= 0.79

RAM 13 GB (SRV 03) 13 GB/13 GB= 1 8 GB/13 GB= 0.61

HDD 1150 MB (SRV 04) 900 MB/1150 MB =0.78 1150 MB/1150 MB= 1

SUM 2.78 2.39

So far, the score of each server is calculated based on the proposed algorithm. Now it is time

to apply dynamic variable scores to the system. The result is presented in Tab. 4.

As depicted in Fig. 10 it is clear that the winner server is SRV 04.

5.2. Simulation Procedure

In this section, the simulation steps of a load balancing algorithm in the system is presented.

We simulate the centralized information algorithm and centralized decision-making algorithm

in our proposed dashboard. As mentioned earlier, system information is stored in a single node

Adaptive Load Balancing Dashboard in Dynamic Distributed Systems

44 Supercomputing Frontiers and Innovations



Table 4. Calculating SRV 03 and SRV 04 Score in Dynamic Variable Case

Server Name
Dynamic Variable

Score

Current

Score

Total Score

(Dynamic Variable)

Current

SRV 03 -63 /100 = -0.63 2.78 2.15

SRV 04 26 /100 = 0.26 2.39 2.65

Figure 10. General comparison between SRV 03 and SRV 04

and the decision is applied by the same node in this category of algorithms. The central part is a

subset of this algorithm. Then according to the described example, the dashboard can play the

role of the center in this system. The developed algorithm is based on load balancing process

using dynamic algorithms. At first, we consider some basic rules for the existing environment as

follows:

Rule 1: Some services have uncertain latency in the system. However, the latency can be

generally divided into three categories based on to the range of changes.

• Communication latency of less than 20 milliseconds;

• Communication latency of 21-80 milliseconds; and

• Communication latency of 81-150 milliseconds.

According to the job type in this environment and the execution time, servers with a latency of

more than 151 milliseconds are considered to be rejected, and nothing refers to them.

Rule 2: The custodian of the environment in which the load balancing process is implemented

is a subset of a major organ. According to this fact, the organization will always keep its most

powerful server in reserve, according by order of the same organ, and this fact must be taken

into account for the load balancing process.

Rule 3: Due to financial constraints for the custodian responsible for load balancing, some of

these servers are subject to defects. This will make the custodian prefer, in equal conditions,

that the job (task) is referred to the servers that are not subject to degradation problems.

S.L. Mirtaheri, S.A. Fatemi, L. Grandinetti

2017, Vol. 4, No. 4 45



Rule 4: Because of the geographical conditions of the area in which the servers are located,

they are subject to high humidity. Therefore, humidity control devices are used to control the

humidity level for the servers in different racks. Currently, it is preferable not to refer the job

to some servers (located on the second floor of the building) which should also be considered in

the implementation of the load balancing process. Given the limitations and conditions above,

we need to implement this algorithm in the environment in such a way that we cover all the

aforementioned aspects.

The Solution for Rule 1: The use of dynamic variables. Given the above and the sensitivity

and importance of time, we define a dynamic variable called Communication Delay to apply the

corresponding servers by using the following rules:

• Communication Delay is zero for servers with a latency of less than 20 milliseconds. So,

we are allowed not to apply this variable to this category of servers because it will not

affect the computing results;

• Communication Delay is -20 for servers with a latency of 21-80 milliseconds; and

• Communication Delay is -60 for servers with a latency of 81-150 milliseconds.

The Solution for Rule 2: The use of system settings when developing the resources allocation

algorithm. This is anticipated when implementing the resource allocation process in the system.

The user determines which server is the winner after the execution of load balancing process in

the system. After determining the second server as the winner, the company’s most powerful

server will be used as reserve.

The Solution for Rule 3: The use of dynamic variables. We can fully cover Rule 3 by defining

a dynamic variable called Quality and set it as follows:

• For servers subject to degradation problems, we consider the value of Quality to be -40;

and

• For the rest of the servers, we consider the value of this variable to be +40.

The Solution for Rule 4: The use of dynamic variables. We define a dynamic variable

called Humidity with a value of -50 for the servers located on the second floor. Now with regard to

the above, we can conclude that all the necessary infrastructures required for the implementation

of the load balancing process are provided through the proposed solutions.

As depicted in Fig.11, the steps to implement a load balancing algorithm using the proposed

system are as follows:

1. Full knowledge of the behavior of the algorithm in terms of both of the load balancing and

resource allocation.

2. Implementation of load balancing approach and resource allocation approach using the dash-

board facilities.

3. Applying the existing limitations and rules to the system by defining related dynamic vari-

ables.

Conclusion

Load balancing is a key necessity to many computing systems. Load balancing not only

improves the performance but also decrease the system failure points. In practice, a load bal-

ancing algorithm include many different variables. Depending on the type, these variables, can

have a wide level of influences on runtime as well as the overall system efficiency. In this re-

search we proposed a flexible dashboard in the environments of load balancing algorithms. In

this approach, we improved the flexibility of the system to be adaptive to dynamic variables. We

Adaptive Load Balancing Dashboard in Dynamic Distributed Systems

46 Supercomputing Frontiers and Innovations



Figure 11. General method for implementing load balancing algorithms in the proposed dash-

board

designed a rule-based dashboard to manage the load balancing process in real-time runtime. We

proposed a scoring system to find the best computing node based on the task specification in an

adaptive manner. We showed that our proposed system is capable if change the boundaries and

limitations of the system, changing the load balancing process, introducing new variables and

removing the existing ones and measuring the running algorithm in the system. We evaluated

our proposed system based at a practical implementation. We also presented a simulation based

on different rules in a limited environment. Evaluation results proved that the proposed system

reduced the probability of the system failure and also determined the maturity of the system

according to the environmental conditions of the load balancing process.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Arab, M., Mirtaheri, S., Khaneghah, E., Sharifi, M., Mohammadkhani, M.: Improving

learning-based request forwarding in resource discovery through load-awareness. Data Man-

agement in Grid and Peer-to-Peer Systems pp. 73–82 (2011), DOI: 10.1007/978-3-642-22947-

3 7

2. Balasangameshwara, J., Raju, N.: Performance-driven load balancing with a primary-

backup approach for computational grids with low communication cost and replication cost.

IEEE Transactions on Computers 62(5), 990–1003 (2013), DOI: 10.1109/TC.2012.44

3. Brodowicz, M., Sterling, T.: Simultac fonton: A fine-grain architecture for extreme perfor-

mance beyond moore’s law. Supercomputing Frontiers and Innovations 4(2), 27–37 (2017),

DOI: 10.1109/HPCSim.2016.7568352

S.L. Mirtaheri, S.A. Fatemi, L. Grandinetti

2017, Vol. 4, No. 4 47



4. Casanova, H.: Simgrid: A toolkit for the simulation of application scheduling. In: Cluster

computing and the grid, 2001. Proceedings. First IEEE/ACM international symposium on.

IEEE (2001), DOI: 10.1109/CCGRID.2001.923223

5. Dinitz, M., Fineman, J., Gilbert, S., Newport, C.: Load balancing with bounded conver-

gence in dynamic networks. In: IEEE INFOCOM 2017 - IEEE Conference on Computer

Communications. pp. 1–9 (2017), DOI: 10.1109/INFOCOM.2017.8057000

6. Domanal, S.G., Reddy, G.R.M.: Load balancing in cloud environment using a novel hybrid

scheduling algorithm. In: Cloud Computing in Emerging Markets (CCEM), 2015 IEEE

International Conference on. pp. 37–42. IEEE (2015), DOI: 10.1109/CCEM.2015.31

7. Heene, M., Kowitz, C., Pflüger, D.: Load balancing for massively parallel computations with

the sparse grid combination technique. In: PARCO. pp. 574–583 (2013), DOI: 10.3233/978-

1-61499-381-0-574

8. LD, D.B., Krishna, P.V.: Honey bee behavior inspired load balancing of tasks

in cloud computing environments. Applied Soft Computing 13(5), 2292–2303 (2013),

DOI: 10.1016/j.asoc.2013.01.025

9. Mahafzah, B.A., Jaradat, B.A.: The hybrid dynamic parallel scheduling algorithm for load

balancing on chained-cubic tree interconnection networks. The Journal of Supercomputing

52(3), 224–252 (2010), DOI: 10.1007/s11227-009-0288-3

10. Mirtaheri, S.L., Grandinetti, L.: Dynamic load balancing in distributed exascale computing

systems. Cluster Computing (May 2017), DOI: 10.1007/s10586-017-0902-8

11. Mohamed, N., Al-Jaroodi, J.: Delay-tolerant dynamic load balancing. In: 2011 IEEE In-

ternational Conference on High Performance Computing and Communications. pp. 237–245

(2011), DOI: 10.1109/HPCC.2011.39

12. Mousavi Khaneghah, E., Mirtaheri, S.L., Sharifi, M., Minaei Bidgoli, B.: Modeling and

analysis of access transparency and scalability in p2p distributed systems. International

Journal of Communication Systems 27(10), 2190–2214 (2014), DOI: 10.1002/dac.2467

13. Patel, P., Bansal, D., Yuan, L., Murthy, A., Greenberg, A., Maltz, D.A., Kern, R.,

Kumar, H., Zikos, M., Wu, H., et al.: Ananta: Cloud scale load balancing. In:

ACM SIGCOMM Computer Communication Review. vol. 43, pp. 207–218. ACM (2013),

DOI: 10.1145/2486001.2486026

14. Pickartz, S., Lankes, S., Monti, A., Clauss, C., Breitbart, J.: Application migration in HPC

driver of the exascale era? In: High Performance Computing & Simulation (HPCS), 2016 In-

ternational Conference on. pp. 318–325. IEEE (2016), DOI: 10.1109/HPCSim.2016.7568352

15. Sharma, M., Yadav, A., Sharma, P.: An optimistic approach for load balancing in cloud

computing pp. 27–30 (2014), international Journal of Computer Science and Engineering

2(3)

16. Soltani, N., Khaneghah, E.M., Sharifi, M., Mirtaheri, S.L.: A dynamic popularity-aware

load balancing algorithm for structured p2p systems. Springer (2012), DOI: 10.1007/978-3-

642-35606-3 9

Adaptive Load Balancing Dashboard in Dynamic Distributed Systems

48 Supercomputing Frontiers and Innovations



17. Wang, K., Zhou, X., Qiao, K., Lang, M., McClelland, B., Raicu, I.: Towards scalable

distributed workload manager with monitoring-based weakly consistent resource stealing.

In: Proceedings of the 24th International Symposium on High-Performance Parallel and

Distributed Computing. pp. 219–222. ACM (2015), DOI: 10.1145/2749246.2749249

18. Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., Raicu, I.: Optimizing load balancing and

data-locality with data-aware scheduling. In: Big Data (Big Data), 2014 IEEE International

Conference on. pp. 119–128. IEEE (2014), DOI: 10.1109/BigData.2014.7004220

19. Xu, G., Pang, J., Fu, X.: A load balancing model based on cloud partition-

ing for the public cloud. Tsinghua Science and Technology 18(1), 34–39 (2013),

DOI: 10.1109/TST.2013.6449405

S.L. Mirtaheri, S.A. Fatemi, L. Grandinetti

2017, Vol. 4, No. 4 49


