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Complex memory hierarchies of nowadays machines make it very difficult to estimate the

execution time of tasks as depending on where the data is placed in memory, tasks of the same

type may end up having different performances. Multiple scheduling heuristics have managed to

improve performance by taking into account memory-related properties such as data locality and

cache sharing. However, we may see tasks in certain applications or phases of applications that

take little or no advantage of these optimizations. Without understanding when such optimizations

are effective, we may trigger unnecessary overhead at the runtime level.

In previous work we introduced TaskInsight, a technique to characterize how the memory

behavior of the application is affected by different task schedulers through the analysis of data reuse

across tasks. We now use this tool to dynamically trace the scheduling decisions of multi-threaded

applications through their execution and analyze how memory reuse can provide information on

when and why locality-aware optimizations are effective and impact performance.

We demonstrate how we can detect particular scheduling decisions that produced a variation

in performance, and the underlying reasons for applying TaskInsight to several of the Montblanc

benchmarks. This flexible insight is a key for both the programmer and runtime to allow assigning

the optimal scheduling policy to certain executions or phases.
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Introduction

Scheduling tasks in task-based applications have become significantly more difficult due

to overall system complexity, particularly to the deep shared memory hierarchies. Typical ap-

proaches to optimizing scheduling algorithms consist of either providing an interactive visual-

ization of the execution trace [1, 5] or simulating the tasks execution to evaluate the overall

scheduling policy in a controlled environment [4, 9]. A developer then has to analyze the re-

sulting profiling information and deduce if the scheduler behaves as expected, and qualitatively

compare different schedulers.

Poor scheduling decisions can result in idle execution time due to load imbalance from the

inability to prioritize tasks on the critical path or appropriate map tasks to processors. However,

the scheduler decisions also impact data locality in the cache hierarchy by changing the order

of tasks. The result of these decisions is performance variation across tasks that can only be

understood by analyzing how the tasks share data and how the schedule affects that sharing.

Usually developers of a task-based application blame this performance degradation on data

locality and attempt to characterize their workload based on data reuse without considering the

dynamic interaction between the scheduler and the caches [3, 10]. This is simply because there

has been no way to obtain precise information on how the data was reused through the execution

of the application, such as how long it remained in the caches, and how the scheduling decisions

influenced this reuse. Without an automatic tool capable of providing insight as to whether

and where the scheduler misbehaved, the programmer must rely on intuition to understand and

adjust the scheduler for improved performance.

In previous work we presented TaskInsight, a new methodology to characterize, in a quantifi-

able way, the scheduling process in the context of one of the most important performance-related
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Figure 1. Distribution of the performance differences of all the experiments per benchmark. E.g. 80% of the

runs of fft had over 20% performance difference when executed with a different schedule. All three graphs are

the same but with different scales on the x-axis

characteristics: how the schedule affects data reuse between tasks through the cache hierarchy

over time, which provides insight into performance of the scheduler.

In this work, we show how applying TaskInsight to the widely adopted Montblanc bench-

marks reveals deep insight into why scheduling changed the memory behavior of applications,

the key to understanding performance variation across different executions. The article is or-

ganized as follows. We firstly analyze all the applications with different scheduling policies and

input sizes (Section 1). From all the executions, we select three specific applications, presenting

case-studies to show how applying TaskInsight reveals what were the problematic issues (Section

2). Then, we cover related previous work (Section 3) to finally conclude with some remarks on

how the TaskInsight analysis enables us to understand other behaviors across the benchmarks

and schedulers (Conclusion).

1. Motivation

It is well-known that cache optimization is crucial for performance, but real-world applica-

tions expose different sensitivities to changes in memory behavior. Task-based applications can

vary wildly in their behavior based on several factors such as the size of the input problem (total

data), the number of tasks they spawn, how they distribute work among those tasks (paral-

lelism), and how many tasks they can run in parallel (dependencies). Each of these factors can

typically be controlled, either by configuring the application or by the runtime. Nevertheless, it

is often difficult to know which one is the best and how would the scheduler behave with these

new configurations.

Before diving into understanding of how scheduling changes the internal application’s mem-

ory behavior, it is worth studying how significant the effects of scheduling can be. To do that, we

begin by looking at OmpSs [6] implementations of the Montblanc Benchmarks [4]. These bench-

marks were designed to cover a diverse range of task-based applications and behaviors. We

selected 9 benchmarks from the suite, and executed them with over 100 different combinations

of input parameters (different input datasets, number of tasks, steps, dimensions, simulations,

particles, etc.), each of which we call configuration. Every configuration was executed with two

different scheduling policies, one of which attempts to optimize for locality (smart, which fol-

lows the path of the spawned child tasks first) and one of which does not (naive, which follows

a regular Breadth-First search on the spawned tasks), and we refer to them as experiments.

These two scheduling policies are default options provided by the OmpSs framework. In order

to understand how sensitive the benchmarks are to scheduling, we show how much of an impact

the two schedulers have on the tasks’ performance in Figure 1. Note that this metric considers
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the task execution time to reveal memory system effects, and therefore excludes the scheduler

or the runtime overhead.

This gives us a distribution of the performance differences on a per-benchmark basis. We

can see which benchmarks exposed the largest sensitivity to scheduling across different config-

urations, and how often these performance differences occur. The graph shows the percentage

of the population (of the 100 configurations per benchmark, y-axis) as a function of slowdown

(percentage between the two schedulers, x-axis). In essence, this summarizes how many of the

experiments have a slowdown larger than X% (i.e. when changing the scheduling policy). Bench-

marks such as fft, cholesky, reduction and n-body have a high variation in performance

across a significant number of their configurations: 40% of the executions of fft have more

than 60% performance difference when changing the scheduling policy; for reduction 30% of

the executions have over 30% performance difference; and for cholesky, 40% have differences

of over 30%.

On the other hand, raytrace, dense-matrix and atomic-montecarlo show negligible per-

formance changes between the schedulers across all configurations. Interestingly, being insensi-

tive to scheduler changes appears in two forms depending on whether the performance impact

is small or the number of configurations that experience it is small. raytrace (green line) shows

that there is a variation when changing the scheduling policy in almost every execution, how-

ever, all those differences are less than 1%, and a similar (but more noticeable) effect is observed

in dense-matrix, with differences under 13%. On the flip side atomic-montecarlo shows that

variation is very unlikely to occur (1 in 100 configurations), but when it does, the performance

difference is significant (over 90%). These are two opposite and very extreme behaviors, but in

the context of this work they have the same implication that there is little to be gained from

optimizing the scheduler. For simplicity, we will classify both types as benchmarks that are

performance insensitive to scheduling changes.

The results of comparing the schedulers in Figure 1 shows significant variation in how appli-

cations respond to changes in scheduling, and a substantial potential for improving performance

through better scheduling. However, today’s tools and techniques do not enable us to analyze

and understand how they are related to scheduling, why they occur, and how to avoid them.

TaskInsight, originally presented in [2], can characterize performance differences caused by

changes in memory behavior of the application due to scheduling. In the following section, we

will select three applications that exposed performance variation (reduction, histogram and fft),

and show how TaskInsight enables us to understand the reasons behind it.

2. Analyzing Performance Variation Due To Scheduling

From the benchmarks shown in Figure 1, we have selected three of the scheduling-sensitive

benchmarks: fft (solving a Fast Fourier Transform), reduction (non-trivial computation over

vectors and reduction of the results) and histogram (computing the histogram of a sample

population). We will first observe the performance variation over time to identify the main

differences between the two schedulers (naive and smart). We will then look at the profile

data to see whether the source of the performance difference is memory, such as more L2 or L3

cache misses. Finally, we will correlate this data with TaskInsight’s reuse analysis to understand

how this memory behavior comes from different data reuse patterns in different schedules. Each

execution took less than 10 minutes.
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Figure 2. If data is used in a tidy pattern (smart, left), it fits in the cache exposing perfect reuse and incurring

fewer cache misses. However, a more spread pattern (naive, right) has constant cache misses across the entire

execution with a performance penalty. Cacheline refers to the number of unique cachelines touched by the task,

which can be directly correlated to cache misses

2.1. Single Task with Negative Impact if Data is not in the Cache

(Reduction)

An interesting case study is reduction (with inputs: nelem=8M, nt=128), where most of

the performance differences come from missing in the L2 cache. Data for L3 is not displayed

because there is no relevant change across schedules. From Figure 2 we can see that in smart,

there is a cycle drop after executing the first 36 tasks, and it corresponds to a drop in L2 misses.

From TaskInsights reuse analysis we see that data is still being reused, and has been reused

very recently (many last-reuses), meaning that the data is present in L2. On the other hand,

naive has a lower number of L2 misses but they are spread across the entire execution, causing

a more constant average cycle count. From the TaskInsight reuse analysis we see that data has

also been reused recently, but in a different pattern.

The interesting singularity that we observe is the task number 63 which brings a significant

amount of new data. In smart, this task was scheduled in the very beginning (5th), and it is

both touching a large set of new data and reusing very recent data. In naive this task, because

of dependency flexibility, was scheduled much later (63rd), and by that time the data it has

to reuse is much older as we see from TaskInsight’s classification. As its reuse is not much

further away, the task generates roughly 10x more L2 misses (also 10x more L3 misses) and its

execution now is 400X slower than in smart (note the Log scale). We are able to draw these

type of conclusions because OmpSs assigns unique tasks IDs to the tasks at initialization time.

Thus, we can identify how the same tasks were scheduled differently.

This is an interesting example of an application that exposes two fascinating effects. First, if

data is used in a tidy pattern, it might fit in the cache, delivering good reuse and incurring many

fewer cache misses in contrast to a more spread-out pattern that has constant misses across the

entire execution. Second, a single task can suffer a significant performance loss by being scheduled

further away from tasks with which it shares data, thereby creating a significant penalty to the
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Figure 3. Scheduling bigger tasks sooner (smart, left) will bring a larger amount of new-data sooner, exposing

more last-reuses between subsequent tasks

applications overall performance. In order to understand these issues we need TaskInsight’s data

usage classification combined with the performance profile.

2.2. Differences in Bringing New Data Sooner or Later (Histogram)

Another example where temporal locality of data at the private caches matters significantly

is the benchmark histogram (with inputs: nelem=4M, nbins=256, nt=128), Figure 3. The

largest slowdown we observe in a spike in the cycle count for naive, due to an increase in L2

misses (creating a difference of over 20% across the two schedules).

TaskInsight shows what the problem is (the reuse of old data and use of new data) and

where it comes from (the 18th task). Task 18 was executed as number 1 in smart, and has a

particularly large data set. By bringing its data in first, it enables that data to be installed in

the cache and we see reuse by subsequent tasks. On the other hand, if this task is scheduled

later, as in naive, it will reuse many smaller portions of already executed tasks (with smaller

data sets) which were very likely evicted from the cache. This causes a domino-effect that affects

several tasks creating a substantial difference in the overall cycle count.

TaskInsight not only shows the importance of scheduling a task sooner or later because of

its consequences, but it also allows us to detect which specific tasks have this type of behavior

and which other tasks are affected, enabling new insight into the scheduler’s behavior.

2.3. Reusing Old Data Spikes Last Level Cache Misses (FFT)

In fft (with inputs: nelem=1M, bs-tr=64, bs-fft=128) there is an interesting effect worth

studying at the L3 cache level. We use the multithreaded capability of TaskInsights to analyze

this. As we see from Figure 4, both schedulers show two spikes with a sudden slowdown in

cycles at co-running sets 35 and 73, which are correlated with spikes in L3 misses. The number

of L2 misses is not displayed in this case, for simplicity, but the trend is similar to L3.

The two spikes in the total cycles (performance, top) align with an increase in L3 misses

(middle). By looking at TaskInsight’s data classification (bottom), we can see that at those

places where the application is missing more, it is also reusing older data, which is likely not
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Figure 4. TaskInsight analysis of fft, where reuse of older data incurred in more L3 cache misses, causing two

spikes in the tasks cycle count

present in the cache. By correlating this data over time, we can see that this is caused by the

fact that tasks executed together at these times are not scheduled to reuse data effectively.

By comparing the two schedules, we see that naive has over 10% worse performance. When

looking at the cycle count over time and L3 misses, we see that during co-running sets 0 to 33, it

incurred in twice as many L3 cache misses, explaining where the overall performance difference

is coming from.

Even though we can observe this performance and memory behavior directly with perfor-

mance counters, is is only by adding TaskInsights data classification that we can understand

that the extra cycles seen in naive is only from new-data accesses which should be coming from

the main memory. This might seem counter-intuitive, as the reuse analysis is almost identical

in both schedulers, but other memory factor (not yet included in this model) like prefetching fit

as a very good candidate responsible for the performance difference.

3. Related Work

Multiple visualization tools [1, 5, 7] propose diagnosing scheduling anomalies by summa-

rizing and averaging information provided by both the runtime and the hardware performance

counters. However, when certain tasks end up being executed in a certain order and with differ-

ent performance, it is up to the programmer to reverse-engineer the scheduler’s decisions, the

reasons behind them, and the moment in time where these decisions happen. With TaskInsight

we analyze the memory reuse and show the reasons and the exact points in time that trigger

performance variation.

Stanisic et al. [9] simulate tasks’ execution in order to isolate the scheduler’s effect on

performance from tasks’ unpredictable behavior. In our work we execute the entire application

on real hardware and we characterize the interaction between the scheduler and the tasks, which

triggers online scheduling decisions and performance variation.

The memory reuse metric has been previously used [3, 10] to analyze spatial and temporal

locality of the application independent of the architecture. We propose correlating the tasks
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efficient use of the memory with performance variation by detecting when and why an online

scheduling decision is taken. Unlike [8] we look at the reused data throughout the execution and

provide an analysis over time.

Conclusion

In this work we have applied TaskInsight, a methodology that provides high-level, quantifi-

able information that ties task scheduling decisions to how tasks reuse data and the resulting

task performance, to diagnose the reasons behind performance differences across different runs

of the Montblanc applications. By combining schedule independent memory access profiling (to

classify how data is reused between tasks) and schedule specific hardware performance counter

data (to determine performance on a given system) we are able to identify which scheduling

decisions impact performance, when they happen, and why they cause a problem.

TaskInsight not only shows how a scheduler can be improved, but also gives explanations

for why tasks of the same type can demonstrate drastic variation in performance (up to 60%

in our examples). With this, programmers can now quantitatively analyze the behavior of the

scheduling algorithm and the runtime can use this information to dynamically make better

decisions, for example, by using a saved profile of the memory behavior of each task to determine

what to schedule next.

Our analysis exposed scheduler-induced performance differences of above 10% due to 20%

changes in data reuse through the private caches and up to 80% difference data reuse through

the shared last level cache. By providing this insight into the coupling between the schedule’s

behavior, data reuse through the cache hierarchy, and the resulting performance, we lay the

groundwork for improving scheduling policies.
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