
Performance Evaluation of Runtime Data Exploration

Framework based on In-Situ Particle Based Volume Rendering

Takuma Kawamura1, Tomoyuki Noda1, Yasuhiro Idomura1

c© The Authors 2017. This paper is published with open access at SuperFri.org

We examine the performance of the in-situ data exploration framework based on the in-situ

Particle Based Volume Rendering (In-Situ PBVR) on the latest many-core platform. In-Situ PBVR

converts extreme scale volume data into small rendering primitive particle data via parallel Monte-

Carlo sampling without costly visibility ordering. This feature avoids severe bottlenecks such as

limited memory size per node and significant performance gap between computation and inter-node

communication. In addition, remote in-situ data exploration is enabled by asynchronous file-based

control sequences, which transfer the small particle data to client PCs, generate view-independent

volume rendering images on client PCs, and change visualization parameters at runtime. In-Situ

PBVR shows excellent strong scaling with low memory usage up to ∼ 100k cores on the Oakforest-

PACS, which consists of 8,208 Intel Xeon Phi7250 (Knights Landing) processors. This performance

is compatible with the remote in-situ data exploration capability.

Keywords: in-situ visualization, volume rendering, runtime steering, strong scaling, perfor-

mance evaluation.

Introduction

Recent advances in HPC technology enabled extreme scale simulations at several tens of

Peta-FLOPS, while the performance gap between computation and data I/O is enhanced. Be-

cause of this severe I/O bottleneck, data handling procedures such as “data output from simula-

tions to storage” and “data input from storage to visualization applications” are becoming very

costly, and conventional post processing visualization strategies often fail. In-situ visualization is

one of promising solutions to this issue. In this approach, the I/O bottleneck is avoided by com-

bining simulations and visualization applications to visualize simulation data at runtime on the

same computing nodes. This requires extreme scale parallel visualization with high scalability

at the same level as the simulations.

Computational fluid dynamics (CFD) applications are widely used in various science and

engineering fields, and are expected to be one of major applications on future exa-scale systems.

Although variety of scientific visualization methods have been developed for CFD applications,

visualization methods applicable to massively parallel processing of extreme scale volume data

are still limited. Therefore, volume rendering methods for in-situ approaches should be carefully

selected from the viewpoint of massively parallel processing and flexible visual analytics. Vol-

ume rendering is one of scalable visualization methods, which are suitable especially for CFD

applications. In addition, in Ref. [4], it was shown that the volume rendering makes visual

analytics flexible by extending the definition of transfer functions (TFs) into multi-dimension.

Multi-dimensional transfer functions (MDTFs) generate not only three dimensional (3D) volume

rendering, but also iso-surfaces, slice planes, image cropping, and image composition.

Another important requirement is interactivity of in-situ visualization. In the conventional

in-situ visualization, visualization parameters such as viewpoint and TFs are prescribed be-

fore batch processing. But, such prescribed parameters often generate undesirable images. This

problem obviously leads to the loss of computational resources, and is fatal at extreme scale. In

order to extract important features from extreme scale data, one needs to change visualization

1Japan Atomic Energy Agency, Kashiwa, Chiba, Japan

DOI: 10.14529/jsfi170302

2017, Vol. 4, No. 3 43

parameters repeatedly in an interactive manner. To this end, the so-called runtime visualization

approaches [18] [19] are becoming more important in modern visual analytics. In the runtime

visualization approaches, runtime steering of visualization parameters enables interactive in-situ

data exploration, which minimizes such a visualization failure.

However, it is not so clear whether one can design such interactive in-situ visualization

frameworks based on the conventional volume rendering algorithms, which may suffer from the

following issues. Firstly, the conventional algorithms of volume rendering require large rendering

primitive data (e.g., splatting kernels, cells, and polygons), which can be comparable or even

larger than the original volume data. Since exa-scale simulations have to overcome severe con-

straint on the memory size per node, this feature is a critical issue. Secondly, even if one can

store such large rendering primitive data, calculation of semi-transparency attribute requires

costly collective communication for sorting or searching of sub-images, which could lead to per-

formance degradation and prevent strong scaling. Thirdly, the conventional volume rendering

generates view-dependent images, and thus, interactive in-situ visualization becomes extremely

costly. Existing parallel visualization libraries such as VTK-m [12], VisIt [1], and ParaView [2]

support in-situ visualization based on the conventional volume rendering algorithms. However,

the above bottlenecks were not resolved yet. Therefore, it is important to construct in-situ visu-

alization frameworks based on a new volume rendering algorithm, which can resolve the above

issues, and demonstrate its performance on the latest many-core platforms.

In this work, we address these issues by using the In-Situ PBVR [6], which was developed

using visualization algorithm PBVR [17] [15], whose rendering primitive can be processed view-

independent and data size is controllable by image quality. This framework converts extreme

scale volume data into small view-independent rendering primitive (particle) data via Monte-

Carlo sampling, and transfers it to client PCs, where it is rendered at interactive frame rate.

Since the particle generation process does not require visibility ordering, and thus, inter-node

communication, this framework works only with the embarrassingly parallel Monte-Carlo sam-

pling, which can be computed on the same massively parallel nodes as the simulations with

much less memory usage. Therefore, it is expected that this framework does not suffer from

the aforementioned bottlenecks. In addition, the In-Situ PBVR supports flexible MDTF design,

which is essential for visualizing complicated multivariate volume data generated from extreme

scale simulations with high fidelity and reality. We examine the performance of the In-Situ

PBVR, which is coupled to a multi-phase multi-component thermal-hydraulic CFD code, on the

Oakforest-PACS, which consists of 8,208 Intel Xeon Phi7250 (Knights Landing) processors.

1. Related Works

Volume rendering requires visibility ordering for alpha blending over the entire volume

data, which leads to high calculation and memory costs. In realizing interactive visual analytics,

the development of parallel volume rendering with high frame rate and low memory cost is

of critical importance. So far, such parallel volume rendering methods have been developed on

various parallel platforms, and they are categorized into two types: methods optimized for multi-

threaded accelerators such as Xeon Phi and GPU, and methods optimized on massively parallel

CPU platforms. Since massively parallel accelerator platforms are one of promising approaches

towards exa-scale machines, the former is attracting much attention in recent works.

On massively parallel platforms, most parallel volume rendering methods adopts the so-

called sort-last approach, in order to efficiently use distributed memory. While this approach is

Performance Evaluation of Runtime Data Exploration Framework based on In-Situ...

44 Supercomputing Frontiers and Innovations

suitable for processing subdivided volume data on distributed memory, visibility ordering for

image composition requires costly inter-node communication. To resolve this issue, significant

efforts were made in former works. By optimizing time series processing pipeline and reducing the

cost of image composition using improved direct send method, Peterka et al. [13] improved the

performance of parallel volume rendering using 4,096 cores of IBM BlueGene/P and processed

about 644 million grids (8643) of volume data at the frame rate of ∼ 0.3 frame per second

(fps). However, in this work, the cost of image composition rose exponentially, and exceeded the

cost of rendering at 4,096 cores. Perterka et al. further optimized this approach using a faster

compositing algorithm Radix-k and extended the numerical experiment up to 32k cores [14]. In

the case of about 1.4 billion grids (11203), the performance acceleration was saturated at 16k

cores, while in the case of about 90 billion grids (44803), the scalability was extended up to

32k cores. Howison et al. [3] optimized the volume rendering using Levoy’s method [11] with a

hybrid MPI/OpenMP parallelization model on Cray XT5. They conducted scaling tests using

98 billion grids (46083), and the performance was scaled up to 216k cores.

There are several on-going efforts to develop parallel volume rendering methods for acceler-

ators. Embree [21] is a photorealistic ray-tracer, which consists of a set of low-level kernels for

multiple platforms, and has a simple API to port its kernels. OSPRay [20] is a multi-platform

ray-tracing framework for scientific visualization on GPUs and multiple CPU architectures with

varying SIMD widths, and is integrated into VisIT and ParaView. BnsView [8] is a molecular

visualization framework which delivers fast volume rendering and ball-and-stick ray casting on

Xeon Phi and is implemented in a SPMD language. Larsen et. al. [9] presented a method for ray-

tracing consisting entirely of data parallel operators such as map, gather, scatter, reduce, and

scan, which are optimized for CPU and GPU. VTK-m library [12] employs Larsen’s algorithm

for the ray-tracer and supports in-situ visualization mode on various multithreaded devices such

as CPU, GPU, and MIC. In our previous work [5], PBVR was implemented on GPU, and an

order of magnitude speedup was achieved compared with CPU rendering.

In terms of interactive data exploration, transfer of the original data requires a dedicated

visualization cluster and a sustained network bandwidth equal to the solution output rate in

order to support the so-called runtime visualization [10]. Tu et al. [19] proposed an online

approach with image delivery and demonstrated efficient monitoring of tera-scale earthquake

simulations running on supercomputers with thousands of processors. Over a wide-area network,

they were able to interactively change visualization parameters to visually monitor simulation

runs [18]. This kind of online approach was also extended to lightweight in-situ application called

Strawman [10], which supports multiple programming languages and data models with refined

system interface. In Ref. [6], we proposed a runtime visualization framework, In-Situ PBVR,

which enables an online approach by transferring lightweight volume rendering primitive data.

2. In-situ PBVR

PBVR comprises two processes: particle generation and particle projection [7] (see Fig. 1).

The first process constructs a particle density function based on physical variables, and generates

particles for representing volume data. In Fig. 1, the left shows the cell-by-cell particle generation

using Monte-Carlo sampling. The particles are randomly located in each cell and its color is given

by interpolated physical values.

T. Kawamura, T. Noda, Y. Idomura

2017, Vol. 4, No. 3 45

Particle Generation

Volume	Data

Cell

Particle	Data

Particle Rendering

Image	10242

Particle	Data

Image	buffer

Figure 1. Image generation process of PBVR

The second process projects particles onto an image plane, and the particles are stored in

the corresponding particle buffer, and final color and brightness values are synthesized from the

illuminant particles in the buffer. In Fig. 1, the right shows the particle projection onto screen.

The screen has the particle buffer which is consist of color and depth buffers, and each pixel is

subdivided to sub-pixels. After the projection, the color and depth information in sub-pixels are

synthesized to calculate the final pixel color.

PBVR generates particles by referring to the particle density function, which represents

a number of particles in a unit volume. The particle density function is derived from a user-

specified MDTF. The particles are generated in a cell-by-cell manner. In each cell, the locations

of the particles are calculated via Monte Carlo sampling to avoid lattice patterns. The number

of particles in each cell is calculated by volume integration of the particle density function. The

3MB particles	 250MB particles	

Figure 2. The PBVR image quality and the number of particles

size of particle data often becomes several orders of magnitude smaller than that of the original

simulation data, and is determined by a flexible level of details (LOD) control. The left and

right of Fig. 2 shows coarse and fine images with 1, 024× 1, 024 pixels generated using ∼ 3MB

particle data (∼ 0.1M particles) and ∼ 250MB particle data (∼ 9.3M particles), respectively.

Here, a single particle has 27MB data consisting of particle position (4Byte×3), RGB color

(1Byte×3), and normal vector (4Byte×3). One can control the image resolution by varying the

number of particles depending on the purpose of visualization. For example, light weight particle

data may be useful for interactive data exploration via narrow bandwidth network. On the other

hand, heavy particle data may be desirable for generating high fidelity images, once MDTFs are

properly designed through in-situ data exploration.

In-situ PBVR consists of three main components: “Sampler” connected to the simulation

solver on computing nodes, “Daemon” launched on an interactive node, and “Viewer” providing

the multivariate volume renderer and GUI to design MDTFs on client PC. Particle generation

and projection processes are computed by Sampler and Viewer respectively, and Daemon controls

data transfer between them. Fig. 3 shows the whole design of the developed framework.

Performance Evaluation of Runtime Data Exploration Framework based on In-Situ...

46 Supercomputing Frontiers and Innovations

Fig. 2. Left; PVBR viewer. Middle; TFS. Upper right; start/stop button of time progress. Middle right; a panel to call TFS, particle controller and animation
capture. Lower right; terminal. PBVR viewer displays the visualization result of multicomponent analysis for complicated core internals in the reactor pressure
vessel (RPV). Viewpoint is looking up from bottom of RPV. (orientation box at lower right on the viewer indicate x-y-z axis. Z-axis means vertical direction.)
Gray; structure of control rod. Yellow; melted control rod. Red; channel box. Orange; melted fuel rod, which is expelled from the structure of control rod.

TABLE I
COST DISTRIBUTION OF PROPOSED FRAMEWORK

Cores (Procs. X Thrds.) 432 (108 X 4) 864 (216 X 4) 1728 (432 X 4) 3456 (864 X 4)
JUPITER Solver [sec/step] 64.804 37.274 20.064 8.717
PBVR Sampler [sec/step] 1.686 0.946 0.736 0.391
Ratio [%] 2.6 2.5 3.7 4.5

for all cases, so that the gathering time is completely hidden
by the simulation time.

V. CONCLUSION

We have developed a novel in-situ online visualization
framework, which is highly scalable and allows multivariate
volume rendering with view exploration. This framework is
applied to the JUPITER and the feasibility of monitoring large-
scale parallel simulation at runtime from a remote user PC is
demonstrated.

ACKNOWLEDGMENT

We would like to thank Dr. Susumu Yamashita for providing
the JUPITER code. The benchmark test was performed on the
ICE X at the Japan Atomic Energy Agency.

REFERENCES

[1] N. Sakamoto, J. Nonaka, K. Koyamada, and S. Tanaka, “Particle-based
volume rendering,” Asia-Pacific Symposium on Visualization 2007, pp.
129–132, 2007.

[2] T. Kawamura, N. Sakamoto, and K. Koyamada, “Level-of-detail render-
ing of a large-scale irregular volume dataset using particles,” JOURNAL
OF COMPUTER SCIENCE AND TECHNOLOGY, vol. 25, no. 5, pp.
905–915, 2010.

[3] T. Kawamura, Y. Idomura, H. N. Miyamura, and H. Takemiya,
“Multivariate volume rendering using transfer function synthesizer
implemented in remote visualization system pbvr,” in SIGGRAPH
Asia 2015 Visualization in High Performance Computing, ser.
SA ’15. ACM, 2015, pp. 2:1–2:4. [Online]. Available: http:
//doi.acm.org/10.1145/2818517.2818539

[4] T. Kawamura, Y. Idomura, and H. T. Hiroko (Nakamura) Miyamura,
“Algebraic design of multi-dimensional transfer function using transfer
function synthesizer (in press),” Journal of Visualization, 2016.

[5] S. Yamashita, H. Yoshida, and K. Takase, “Development of numerical
simulation method for relocation behavior of molten debris in nuclear
reactors (1) preliminary analysis of relocation of molten debris to lower
plenum,” in Proceedings of 21st International Conference on Nuclear
Engineering (ICONE-21), vol. 4. Nuclear Engineering Division, 2013,
p. V004T09A109.

[6] D. H. Porter, P. R. Woodward, and A. Iyer, “Initial experiences
with grid-based volume visualization of fluid flow simulations on pc
clusters.” in Visualization and Data Analysis, ser. SPIE Proceedings,
R. F. Erbacher, J. C. Roberts, M. T. Grhn, and K. Brner,
Eds., vol. 5669. SPIE, 2005, pp. 115–125. [Online]. Available:
http://dblp.uni-trier.de/db/conf/vda/vda2005.html#PorterWI05

[7] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L.
Ma, and D. R. O’Hallaron, “From mesh generation to scientific
visualization: An end-to-end approach to parallel supercomputing,” in
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
ser. SC ’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1188455.1188551

[8] T. Tu, H. Yu, J. Bielak, O. Ghattas, J. C. López, K. Ma, D. R.
O’Hallaron, L. Ramı́rez-Guzmán, N. Stone, R. Taborda-Rios, and
J. Urbanic, “Analytics challenge - remote runtime steering of integrated
terascale simulation and visualization,” in Proceedings of the ACM/IEEE
SC2006 Conference on High Performance Networking and Computing,
November 11-17, 2006, Tampa, FL, USA, 2006, p. 297. [Online].
Available: http://doi.acm.org/10.1145/1188455.1188767

[9] M. Larsen, E. Brugger, H. Childs, J. Eliot, K. Griffin, and C. Harrison,
“Strawman: A batch in situ visualization and analysis infrastructure for
multi-physics simulation codes,” in Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and
Visualization (ISAV), held in conjunction with SC15, Austin, TX, Nov.
2015, pp. 30–35.

Fig. 2. Left; PVBR viewer. Middle; TFS. Upper right; start/stop button of time progress. Middle right; a panel to call TFS, particle controller and animation
capture. Lower right; terminal. PBVR viewer displays the visualization result of multicomponent analysis for complicated core internals in the reactor pressure
vessel (RPV). Viewpoint is looking up from bottom of RPV. (orientation box at lower right on the viewer indicate x-y-z axis. Z-axis means vertical direction.)
Gray; structure of control rod. Yellow; melted control rod. Red; channel box. Orange; melted fuel rod, which is expelled from the structure of control rod.

TABLE I
COST DISTRIBUTION OF PROPOSED FRAMEWORK

Cores (Procs. X Thrds.) 432 (108 X 4) 864 (216 X 4) 1728 (432 X 4) 3456 (864 X 4)
JUPITER Solver [sec/step] 64.804 37.274 20.064 8.717
PBVR Sampler [sec/step] 1.686 0.946 0.736 0.391
Ratio [%] 2.6 2.5 3.7 4.5

for all cases, so that the gathering time is completely hidden
by the simulation time.

V. CONCLUSION

We have developed a novel in-situ online visualization
framework, which is highly scalable and allows multivariate
volume rendering with view exploration. This framework is
applied to the JUPITER and the feasibility of monitoring large-
scale parallel simulation at runtime from a remote user PC is
demonstrated.

ACKNOWLEDGMENT

We would like to thank Dr. Susumu Yamashita for providing
the JUPITER code. The benchmark test was performed on the
ICE X at the Japan Atomic Energy Agency.

REFERENCES

[1] N. Sakamoto, J. Nonaka, K. Koyamada, and S. Tanaka, “Particle-based
volume rendering,” Asia-Pacific Symposium on Visualization 2007, pp.
129–132, 2007.

[2] T. Kawamura, N. Sakamoto, and K. Koyamada, “Level-of-detail render-
ing of a large-scale irregular volume dataset using particles,” JOURNAL
OF COMPUTER SCIENCE AND TECHNOLOGY, vol. 25, no. 5, pp.
905–915, 2010.

[3] T. Kawamura, Y. Idomura, H. N. Miyamura, and H. Takemiya,
“Multivariate volume rendering using transfer function synthesizer
implemented in remote visualization system pbvr,” in SIGGRAPH
Asia 2015 Visualization in High Performance Computing, ser.
SA ’15. ACM, 2015, pp. 2:1–2:4. [Online]. Available: http:
//doi.acm.org/10.1145/2818517.2818539

[4] T. Kawamura, Y. Idomura, and H. T. Hiroko (Nakamura) Miyamura,
“Algebraic design of multi-dimensional transfer function using transfer
function synthesizer (in press),” Journal of Visualization, 2016.

[5] S. Yamashita, H. Yoshida, and K. Takase, “Development of numerical
simulation method for relocation behavior of molten debris in nuclear
reactors (1) preliminary analysis of relocation of molten debris to lower
plenum,” in Proceedings of 21st International Conference on Nuclear
Engineering (ICONE-21), vol. 4. Nuclear Engineering Division, 2013,
p. V004T09A109.

[6] D. H. Porter, P. R. Woodward, and A. Iyer, “Initial experiences
with grid-based volume visualization of fluid flow simulations on pc
clusters.” in Visualization and Data Analysis, ser. SPIE Proceedings,
R. F. Erbacher, J. C. Roberts, M. T. Grhn, and K. Brner,
Eds., vol. 5669. SPIE, 2005, pp. 115–125. [Online]. Available:
http://dblp.uni-trier.de/db/conf/vda/vda2005.html#PorterWI05

[7] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L.
Ma, and D. R. O’Hallaron, “From mesh generation to scientific
visualization: An end-to-end approach to parallel supercomputing,” in
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
ser. SC ’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1188455.1188551

[8] T. Tu, H. Yu, J. Bielak, O. Ghattas, J. C. López, K. Ma, D. R.
O’Hallaron, L. Ramı́rez-Guzmán, N. Stone, R. Taborda-Rios, and
J. Urbanic, “Analytics challenge - remote runtime steering of integrated
terascale simulation and visualization,” in Proceedings of the ACM/IEEE
SC2006 Conference on High Performance Networking and Computing,
November 11-17, 2006, Tampa, FL, USA, 2006, p. 297. [Online].
Available: http://doi.acm.org/10.1145/1188455.1188767

[9] M. Larsen, E. Brugger, H. Childs, J. Eliot, K. Griffin, and C. Harrison,
“Strawman: A batch in situ visualization and analysis infrastructure for
multi-physics simulation codes,” in Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and
Visualization (ISAV), held in conjunction with SC15, Austin, TX, Nov.
2015, pp. 30–35.

Client PC	Supercomputer	

Solver	

Storage	

Daemon	 Viewer	
Vis.	Param.	File	Par1cle	

Histogram	
Gather	

Vis.	Param.	

Par1cle	

In-Situ	Vis.		
via	Internet	 Renderer	

GUI	of	TFS	

Time	Step	File	

TFS	KVS	
Sampler	

Figure 3. Three components of In-situ PBVR. From left to right, Sampler, Daemon, and Viewer

2.1. Viewer

Viewer on client PCs receives particle files, histogram files, and time step files from Dae-

mon. Here, the particle file contains particle data, the histogram file has the information on

distribution of (synthesized) variables, and the time step file contains other control parameters.

Viewer renders particle data by projecting particles onto an image plane. Since the particle data

is view-independent, one can easily change viewpoints, shading types, and light directions to

explore the volume data. Since the maximum particle data size is several hundreds MB, Viewer

works on PCs with small memory, and its thread parallel implementation with OpenMP enables

interactive data exploration at interactive frame rate [5].

Another important interactive feature is flexible design environment of MDTFs supported

by Transfer Function Synthesizer (TFS) [4]. Based on algebraic expressions, TFS generates

new variables at runtime following definitions given as functions of existing multiple variables,

coordinates, and time. The definitions of new variables are stored as character data of algebraic

expressions. 1D TFs, which defines the color and the opacity as a function of a single variable,

are designed using GUIs based on algebraic expressions, control points, or freeform curves. 1D

TFs are stored either as character data or as data tables. Finally, algebraic synthesis of multiple

1D TFs gives a MDTF, which defines the color and the opacity independently as functions of

multiple variables. The definition of MDTF is stored as character data of algebraic expressions.

Together with other visualization parameters such as the number of particles, the above MDTF

information is transferred to Daemon, and stored in a visualization parameter file.

2.2. Sampler

Sampler is written in C++ based on a visualization library KVS [16], which supports various

data structures for visual programing. The routines of Sampler are wrapped in C interface,

which can be called also from Fortran programs. Sampler is parallelized using a hybrid MPI

and OpenMP parallelizaiton model, where MPI parallelization follows domain decomposition of

the simulations, while OpenMP is applied to cell-by-cell parallelization in each subdomain. This

parallelization strategy makes the API of Sampler quite simple. Sampler is easily coupled to the

simulation by calling the following function from each MPI process at each time step.

void generate particles(Type** subvolume, Param* parameters)

T. Kawamura, T. Noda, Y. Idomura

2017, Vol. 4, No. 3 47

Here, subvolume is data array of resulting multivariate volume data in each subdomain,

and parameters involve the information of volume data size and MPI parameters such as

the rank ID, the number of MPI processes, and MPI communicators. A pseudo code of void

generate particles is shown in Code 1, where parameters are visualization parameters in-

cluding MDTF read from the visualization parameter file, multi dim tf gives the color and the

opacity by processing MDTF, interpolator calculates trilinear scalar interpolation at given

point, gradient defines the normal vector from the gradient of the opacity around given point,

conv opa2dens converts the opacity to the normalized particle density [7], particle object is

a dynamic array for generated particles, which have point (particle position), color (8bit RGB),

and gradient (normal vector), following the KVS format. Since the number of particles in each

cell varies depending on multivariate volume data and MDTFs, the particle generation is paral-

lelized in a cell-by-cell manner with dynamic scheduling. In each cell, the number of particles is

computed, particles are generated following the opacity or the particle density via Monte-Carlo

sampling, and the color is computed from MDTFs. The most expensive part of the particle gen-

eration is multi dim tf, in which algebraic expressions of MDTFs, which is given as character

data, are interpreted and expanded into a tree structure by using a function purser, and then,

volume data synthesis, 1D TF computation, and MDTF synthesis are computed sequentially. In

order to reduce the cost of multi dim tf, we synthesize volume data before starting the particle

generation, and keep a copy of the volume data of opacity, which is used for calculation of the

normal vector given by the gradient of the opacity.

Although Sampler can be processed using the original volume data on the memory of com-

puting nodes, we produce a copy of the volume data before the particle generation, so as not

to affect the simulation. As a result, the current Sampler consumes memory space for a copy of

the original multivariate volume data, the volume data of opacity, and generated particles.

When the visualization parameter file is updated, visualization parameters are distributed

from the master process, and the corresponding histogram data computed by using the new

visualization parameters are reduced to the master node. Apart from this initialization process,

the particle generation is processed without any MPI communication, and the generated particle

data is written from each process using POSIX I/O in an asynchronous manner.

2.3. Daemon

Daemon is operated on an interactive processing node or on a login node, which can access

the storage and are connected to the internet, and controls the following data transfer between

Viewer and Sampler.

• Sampler ← Viewer: visualization parameter file

• Sampler → Viewer: particle file, histogram file, time step file

Daemon interacts with Viewer via socket communications (through ssh tunnel), while it interacts

with Sampler via asynchronous file-based control sequences. When new visualization parameters

are transferred from Viewer, Daemon writes them to a new visualization parameter file. As shown

in Code 1, when Sampler is launched from the simulation, it detects the new parameter file, and

the master process reads new visualization parameters and distributes them via MPI Bcast. In

principle, this process may be constructed without MPI Bcast, provided that all processes can

read the same visualization parameter file. However, depending on the timing of file update, all

computing nodes may not access the same file, and the coherence of visualization parameters

may break down. To avoid such a failure, the above file control sequence is designed. Even

Performance Evaluation of Runtime Data Exploration Framework based on In-Situ...

48 Supercomputing Frontiers and Innovations

Algorithm 1 generate particles on each MPI rank

1: MPI Barrier

2: if Open(visualization parameter file) == true then

3: if mpi rank == 0 then

4: Read(visualization parameter file) → parameters

5: Rename(visualization parameter file → old parameter file)

6: end if

7: MPI Bcast(parameters)

8: MPI Reduce(histograms)

9: Write(histogram file) ← histograms

10: end if

11: #pragma omp for schedule(dynamic) nowait

12: for each cell do

13: scalars ← interpolator(gravity center of cell)

14: opacity ← multi dim tf(scalars)

15: density ← conv opa2dens(opacity, visualization parameters)

16: num particles ← density * volume of cell

17: c = 0

18: while c < num particles do

19: point ← randomly sampled point in each cell.

20: scalars ← interpolator(point)

21: opacity ← multi dim tf(scalars)

22: density ← conv opa2dens(opacity, visualization parameters)

23: r ← random number from 0 to 1.

24: if density > r then

25: vector ← gradient(point)

26: color ← multi dim tf(scalars)

27: particle object ← (point, color, vector)

28: c + +

29: end if

30: end while

31: end for

32: Write(particle file) ← particle object

33: if mpi rank == 0 then

34: Write(time step file)

35: end if

T. Kawamura, T. Noda, Y. Idomura

2017, Vol. 4, No. 3 49

with this control sequence, when Daemon and Sampler access the visualization parameter file

simultaneously and the update of the visualization parameter file is not completed, Sampler often

fails because of incomplete visualization parameters. To avoid this error, the exclusive control of

write and read sequences of the visualization parameter file is designed, so that Daemon writes

“END OF FILE” statement at the end of the visualization parameter file, and before Sampler

reads the visualization parameters, it waits until this statement is detected in the file.

On the other hand, when the current time step in the time step file is updated by the

master process of Sampler, Daemon starts to gather the particle files. This file I/O is thread

parallelized via OpenMP. Here, their file names include the information of the current time step,

the rank ID, and the number of MPI processes. By using this information, Daemon detects the

completion of the file gather, before it launches transfer of the merged particle data to Viewer.

3. Performance Evaluation

In-Situ PBVR was originally developed on the ICEX, which consists of 2,510 Intel Xeon E5-

2680v3 connected via the Infiniband FDR interconnect, and its performance showed excellent

strong scaling up to 3,456 cores [6]. In order to estimate its performance on the latest many core

platforms, which have significantly different hardware characteristics from the ICEX, we conduct

a numerical experiment on the Oakforest-PACS, in which 8,208 computing nodes with Intel Xeon

Phi7250 (Knights Landing) are connected via the Intel Omni-Path Host Fabric Interface.

Sampler is connected to the JUPITER code [22], which computes relocation behavior of

molten debris in reactor pressure vessels based on thermal-hydraulic equations and multiphase

simulation models. The code is based on structured grids with 3D domain decomposition, and is

highly parallelized using a hybrid MPI and OpenMP parallelization model. A typical simulation

duration of the JUPITER code is ∼3,000,000 time steps, and visualization is processed at every

1,000 steps. However, in this numerical experiment, Sampler is called at every time steps. A

strong scaling test is performed with the fixed problem size of 240 × 240 × 1, 920 ∼ 108 grids.

Sampler generates ∼ 107 particles (∼250MB), which is typically used for high quality image

with 1, 024 × 1, 024 pixels. In the strong scaling test, the number of MPI processes per node

is fixed to 4, and the number of threads per MPI process is chosen to be 16. Therefore, 64

cores per node are used without hyper-threading, while the Oakforest-PACS has 68 cores per

node. The multi-channel dynamic random access memory (MCDRAM) is used in a cache mode.

In the experiment, the number of nodes (cores) is increased from 24 (1,536) to 1,536 (98,304).

The computational cost is measured over 20 time steps, in which visualization parameters are

updated once.

The strong scaling test is summarized in Tab. 1 and in Fig. 4. In Tab. 1, “Solver” and

“Sampler” mean the costs of the JUPITER code and the In-Situ PBVR, respectively. “Write”

and “Update” are respectively the costs of updating visualization parameters and writing particle

data, which are included in Sampler. The result shows that the cost of Sampler is suppressed

between ∼ 10% and ∼ 45% of the JUPITER code (Solver). If one calls Sampler less frequently,

this cost is negligibly small. Both Solver and Sampler scale up to ∼ 100k cores. However, at

1,536 nodes, the problem size per thread is reduced to 15 × 15 × 5, which is almost the upper

limit of strong scaling, and Solver suffers from significant performance degradation. As a result,

the acceleration of Solver between 24 and 1,536 nodes (the peak performance ratio of ×64)

is limited to ×3.9. Although Sampler shows better acceleration ratio ×9.5, it is still far from

the peak performance ratio. This performance degradation may be attributed to the cost of

Performance Evaluation of Runtime Data Exploration Framework based on In-Situ...

50 Supercomputing Frontiers and Innovations

writing the particle data, and the load imbalance inherent to the particle distribution reflecting

the (synthesized) multivariate volume data. The overhead of file I/O increases from ∼ 1% to

∼ 79% of the total Sampler cost. It is noted that the update of visualization parameters includes

MPI Bcast and MPI Reduce, and thus, the overhead of synchronization among all nodes was

anticipated. However, the result shows very small impact from the update.

Another important result is the memory usage summarized in Tab. 2 where “Solver” and

“Sampler” mean the memory usage of the JUPITER code and the In-Situ PBVR, respectively.

The memory usage of Solver is based on the maximum memory size reported from the job

scheduler, while the memory usage of Sampler is calculated from the difference of the memory

usage before and after the memory allocation for the particle generation. Here, the instantaneous

memory usage is obtained from “/proc/[process ID]/stat” file. Even with the fixed problem size,

the memory usage of Solver shows explosive growth due to increasing halo regions and MPI

buffers. On the other hand, the memory usage of Sampler shows moderate growth, and the

memory usage per MPI process is suppressed between ∼ 3.3MB and ∼ 92MB. This extreme low

memory usage is an important advantage of In-Situ PBVR.

The particle data was transferred to client PCs via socket communication, and the multi-

variate volume data was rendered on Viewer, in which the viewpoint is changed at about 10

fps.

Table 1. Distribution of computational costs per time step

observed in the numerical experiment on Oakforest-PACS

Nodes 24 96 384 1,536

Cores 1536 6,144 24,576 98,304

Solver [sec/step] 26.7 10.3 7.3 6.8

Sampler [sec/step] 7.6 2.8 1.0 0.8

Write [sec/step] 0.078 0.064 0.124 0.645

Update [sec/step] 0.05 0.03 0.04 0.03

0.1	

1.0	

10.0	

100.0	

1,536	 6,144	 24,576	 98,304	

se
c/
st
ep

Cores

Sampler

Solver

Figure 4. Strong scaling of the JUPITER code (Solver) and the In-Situ PBVR (Sampler) on

Oakforest-PACS

T. Kawamura, T. Noda, Y. Idomura

2017, Vol. 4, No. 3 51

Table 2. Total memory consumption observed in the

numerical experiment on Oakforest-PACS

Cores 1536 6,144 24,576 98304

Solver [GB] 106.7 135.0 256.7 773.2

Sampler [GB] 8.9 9.5 11.6 20.4

Conclusion

We have examined the performance of the In-Situ PBVR framework on the latest many-

core platform based on Knights Landing processors. The proposed framework is designed to

process parallel in-situ visualization with the minimum memory usage and to enable interactive

in-situ data exploration. Sampler is parallelized by MPI for each decomposed subdomain and

by OpenMP for each cell, respectively. The result of strong scaling test shows that Sampler

performance scales up to ∼ 100k cores with extremely low memory usage. These are promis-

ing features for future exa-scale in-situ visualization frameworks. Interactive data exploration

is realized by the following two features. Firstly, we designed asynchronous file-based control

sequences for interactive update of visualization parameters between Sampler and Daemon, so

that the performance of Sampler is not affected by the interactive procedure. Secondly, In-Situ

PBVR is based on view-independent rendering primitives, which are given as relatively small

particle data. The particle data is easily transferred to remote PCs via socket communication,

and is rendered at interactive frame rate.

Acknowledgments

This work is partially supported by “Joint Usage/Research Center for Interdisciplinary

Large-scale Information Infrastructures” and “High Performance Computing Infrastructure” in

Japan. This research was supported by MEXT as “Post-K priority issue No.6: Development of

Innovative Clean Energy”.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Visit user’s manual. Tech. rep., Lawlence Livermore National Laboratory (2005), https:

//wci.llnl.gov/simulation/computer-codes/visit/manuals

2. Henderso, A.: Paraview guide, a parallel visualization application. Tech. rep., Kitware Inc.

(2005), http://www.paraview.org

3. Howison, M., Bethel, E.W., Childs, H.: Hybrid parallelism for volume rendering on large-

, multi-, and many-core systems. IEEE Trans. Vis. Comput. Graph. 18(1), 17–29 (2012),

DOI: 10.1109/TVCG.2011.24

4. Kawamura, T., Idomura, Y., Miyamura, H., Takemiya, H.: Algebraic design of multi-

dimensional transfer function using transfer function synthesizer. Journal of Visualization

Performance Evaluation of Runtime Data Exploration Framework based on In-Situ...

52 Supercomputing Frontiers and Innovations

20(1), 151–162 (Feb 2017), DOI: 10.1007/s12650-016-0387-1

5. Kawamura, T., Idomura, Y., Miyamura, H., Takemiya, H., Sakamoto, N., Koyamada,

K.: Remote visualization system based on particle based volume rendering. In: Pro-

ceedings of the conference on VDA. Visualization and Data Analysis 2015, SPIE (2015),

DOI: 10.1117/12.2083501

6. Kawamura, T., Noda, T., Idomura, Y.: In-situ visual exploration of multivariate volume

data based on particle based volume rendering. In: Proceedings of the 2Nd Workshop on

In Situ Infrastructures for Enabling Extreme-scale Analysis and Visualization. pp. 18–22.

ISAV ’16, IEEE Press, Piscataway, NJ, USA (2016), DOI: 10.1109/ISAV.2016.9

7. Kawamura, T., Sakamoto, N., Koyamada, K.: Level-of-detail rendering of a large-scale

irregular volume dataset using particles. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 25(5), 905–915 (2010), DOI: 10.1007/s11390-010-9375-4

8. Knoll, A., Wald, I., Navrátil, P.A., Papka, M.E., Gaither, K.P.: Ray tracing and volume

rendering large molecular data on multi-core and many-core architectures. In: Proceedings

of the 8th International Workshop on Ultrascale Visualization. pp. 5:1–5:8. UltraVis ’13,

ACM, New York, NY, USA (2013), http://doi.acm.org/10.1145/2535571.2535594

9. Larsen, M., Meredith, J., Navrátil, P., Childs, H.: Ray-Tracing Within a Data Parallel

Framework. In: Proceedings of the IEEE Pacific Visualization Symposium. pp. 279–286.

Hangzhou, China (Apr 2015), 10.1109/PACIFICVIS.2015.7156388

10. Larsen, M., Brugger, E., Childs, H., Eliot, J., Griffin, K., Harrison, C.: Strawman: A

batch in situ visualization and analysis infrastructure for multi-physics simulation codes. In:

Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale

Analysis and Visualization (ISAV), held in conjunction with SC15. pp. 30–35. Austin, TX

(Nov 2015), http://doi.acm.org/10.1145/2828612.2828625

11. Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37

(May 1988), DOI: 10.1109/38.511

12. Moreland, K., Sewell, C., Usher, W., ta Lo, L., Meredith, J., Pugmire, D., Kress, J., Sch-

roots, H., Ma, K.L., Childs, H., Larsen, M., Chen, C.M., Maynard, R., Geveci, B.: Vtk-m:

Accelerating the visualization toolkit for massively threaded architectures. IEEE Computer

Graphics and Applications 36(3), 48–58 (2016), DOI: 10.1109/MCG.2016.48

13. Peterka, T., Yu, H., Ross, R., Ma, K.L.: Parallel volume rendering on the ibm blue gene/p.

In: Proceedings of the 8th Eurographics Conference on Parallel Graphics and Visualization.

pp. 73–80. EGPGV ’08, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland

(2008), DOI: 10.2312/EGPGV/EGPGV08/073-080

14. Peterka, T., Yu, H., Ross, R., Ma, K.L., Latham, R.: End-to-end study of parallel volume

rendering on the ibm blue gene/p. In: Proceedings of ICPP 09. Vienna, Austria (2009),

DOI: 10.1109/ICPP.2009.27

15. Sakamoto, N., Kawamura, T., Koyamada, K., Nozaki, K.: Improvement of particle-based

volume rendering for visualizing irregular volume data sets. Computers & Graphics 34(1),

34–42 (2010), DOI: 10.1016/j.cag.2009.12.001

T. Kawamura, T. Noda, Y. Idomura

2017, Vol. 4, No. 3 53

16. Sakamoto, N., Koyamada, K.: Kvs: A simple and effective framework for scientific visu-

alization. Journal of Advanced Simulation in Science and Engineering 2(1), 76–95 (2015),

http://doi.org/10.15748/jasse.2.76

17. Sakamoto, N., Nonaka, J., Koyamada, K., Tanaka, S.: Particle-based volume rendering.

Asia-Pacific Symposium on Visualization 2007 pp. 129–132 (2007), DOI: 10.3154/tvsj.27.7

18. Tu, T., Yu, H., Bielak, J., Ghattas, O., López, J.C., Ma, K., O’Hallaron, D.R., Ramı́rez-

Guzmán, L., Stone, N., Taborda-Rios, R., Urbanic, J.: Analytics challenge - remote run-

time steering of integrated terascale simulation and visualization. In: Proceedings of the

ACM/IEEE SC2006 Conference on High Performance Networking and Computing, Novem-

ber 11-17, 2006, Tampa, FL, USA. p. 297 (2006), DOI: 10.1145/1188455.1188767

19. Tu, T., Yu, H., Ramirez-Guzman, L., Bielak, J., Ghattas, O., Ma, K.L., O’Hallaron, D.R.:

From mesh generation to scientific visualization: An end-to-end approach to parallel super-

computing. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. SC

’06, ACM, New York, NY, USA (2006), DOI: 10.1145/1188455.1188551

20. Wald, I., Johnson, G.P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Gunther, J.,

Navrátil, P.A.: Ospray - A CPU ray tracing framework for scientific visualization. IEEE

Trans. Vis. Comput. Graph. 23(1), 931–940 (2017), DOI: 10.1109/TVCG.2016.2599041

21. Woop, S., Feng, L., Wald, I., Benthin, C.: Embree ray tracing kernels for cpus and the xeon

phi architecture. In: ACM SIGGRAPH 2013 Talks. pp. 44:1–44:1. SIGGRAPH ’13, ACM,

New York, NY, USA (2013), DOI: 10.1145/2504459.2504515

22. Yamashita, S., Yoshida, H., Takase, K.: Development of numerical simulation method for

relocation behavior of molten debris in nuclear reactors (1) preliminary analysis of relocation

of molten debris to lower plenum. In: Proceedings of 21st International Conference on

Nuclear Engineering (ICONE-21). vol. 4, p. V004T09A109. Nuclear Engineering Division

(2013), DOI: 10.1115/icone21-16604

Performance Evaluation of Runtime Data Exploration Framework based on In-Situ...

54 Supercomputing Frontiers and Innovations

