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Increased system size and a greater reliance on utilizing system parallelism to achieve compu-

tational needs, requires innovative system architectures to meet the simulation challenges. The

SHARP technology is a step towards a data-centric architecture, where data is manipulated

throughout the system. This paper introduces a new SHARP optimization, and studies aspects

that impact application performance in a data-centric environment. The use of UD-Multicast to

distribute aggregation results is introduced, reducing the letency of an eight-byte MPI Allreduce()

across 128 nodes by 16%. Use of reduction trees that avoid the inter-socket bus further improves

the eight-byte MPI Allreduce() latency across 128 nodes, with 28 processes per node, by 18%. The

distribution of latency across processes in the communicator is studied, as is the capacity of the

system to process concurrent aggregation operations.
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Introduction

The challenge of providing increasingly unprecedented levels of effective computing cycles,

for tightly coupled computer-based simulations, continues to pose new technical hurdles. With

each hurdle traversed, a new challenge comes to the forefront, with many architectural features

emerging to address these problems. This has included the introduction of vector compute

capabilities to single processor systems, such as the CDC Star-100 [28] and the Cray-1 [27],

followed by the introduction of small-scale parallel vector computing, such as the Cray-XMP [5],

custom-processor-based tightly-coupled MPPs, such as the CM-5 [21] and the Cray T3D [17],

followed by systems of clustered commercial-off-the-shelf micro-processors, such as the Dell

PowerEdge C8220 Stampede at TACC [30] and the Cray XK7 Titan computer at ORNL [24]. For

a decade or so the latter systems relied mostly on Central Processing Unit (CPU) frequency up-

ticks to provide the increase in computational power. But, as a consequence of the end of Dennard

scaling [9], the single CPU frequency has plateaued, with contemporary HPC cluster performance

increases depending on rising numbers of compute engines per silicon device to provide the

desired computational capabilities. Today HPC systems use many-core host elements that utilize,

for example, X86, Power, or ARM processors, General Purpose Graphical Processing Units

(GPGPUs) and Field Programmable Gate Arrays (FPGAs), [15], to keep scaling the system

performance. Network capabilities have also increased dramatically over the same period, with

changes such as increases in bandwidth, decreases in latency, and communication technologies

like InfiniBand RDMA that offload processing from the CPU to the network.

With increasing compute engine counts, system architectures have continued to be CPU

centric, with these system elements being involved in the vast majority of data manipulation.

This has resulted in unnecessary data movement and undesirable competition between com-

putational, communication, storage and other needs for the same computational resources. A

Data-Centric system architecture, which co-locates computational resources and data through-

out the system, enables data to be processed all across the system, and not only by CPU’s
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at the edge. For example, data can be manipulated as it is being transferred within the data

center network as part of a collective operation. This type of approach addresses latency and

other performance bottlenecks that exist in the traditional CPU-Centric architecture. Mellanox

focuses on CPU offload technologies designed to process data as it moves through the network,

either by the Host Channel Adapter (HCA) or the switch. This frees up CPU cycles for compu-

tation, reduces the amount of data transferred over the network, allows for efficient pipelining

of network and computation, and provides for very low communication latencies. To accomplish

a marked increase in application performance, there has been an effort to optimize often used

communication patterns, such as collective operations, in addition to the continuous improve-

ments to basic communication metrics, such as point-to-point bandwidth, latency, and message

rate.

InfiniBand technologies are being transformed to support such data-centric system architec-

tures. These include technologies such as SHARP for handling data reduction and aggregation,

hardware-based tag matching and Network data hardware-gather scatter capabilities. These

technologies are used to process data and network errors at the network levels, without the need

for data to reach a CPU, reducing overall volume of transferred data and system resilience.

This paper extends the investigation of the the SHARP technology previously introduced

[12] for offloading aggregation and reduction operations to InfiniBand switches. The paper is

organized as follows: Section 1 presents previous related work in offload technologies. Section 2

describes the new UD-Multicast protocol which utilizes multiple children in the reduction tree

to avoid using internal node interconnect between sockets. Section 3 describes the benchmarks

and applications investigated, and discusses the distribution of latencies across processes in a

communicator and the network’s ability to process multiple reduction operations concurrently.

The final section provides a summary and discussion of the work presented.

1. Previous Work

In the past extensive work has been done on improving performance of blocking and non-

blocking barrier and reduction algorithms.

Algorithmic work performed by Venkata et al. [33] developed short vector blocking and non

blocking reduction and barrier operations using a recursive K-ing type host-based approach,

and extended work by Thakur [31]. Vadhiar et al. [32] presented implementations of blocking

reduction, gather and broadcast operations using sequential, chain, binary, binomial tree and

Rabenseifner algorithms. Hoefler et al. [16] studied several implementations of nonblocking MPI -

Allreduce() operations, showing performance gains when using large communicators and large

messages.

Some work aimed to optimize collective operations for specific topologies. Representative ex-

amples are ref. [6] and [22], which optimized collectives for mesh topologies, and for hypercubes,

respectively.

Other work presented hardware support for performance improvement. Conventionally, most

implementations use the CPU to setup and manage collective operations, with the network just

used as a data conduit. However, Quadrics [26] implemented support for broadcast and barrier

in network device hardware. Recently IBM’s Blue Gene supercomputer included network-level

hardware support for barrier and reduction operations. Its preliminary version Blue Gene/L [11]

which uses torus interconnect [1], provided up to twice throughput performance gain of all-to-all

collective operations [2, 20]. On a 512 node system the latency of the 16 byte MPI Allreduce() the
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latency was 4.22 µ-seconds. Later, a message passing framework DCMF for the next-generation

supercomputer Blue Gene/P was introduced [18]. MPI collectives optimization algorithms for

this generation of Blue Gene were analyzed in [10]. The recent version Blue Gene/Q [14] provides

additional performance improvements for MPI collectives [19]. On a 96,304 node system, the la-

tency of a short allreduce is about 6.5 µ-seconds. IBM’s PERCS system [4] fully offloads collective

reduction operations to hardware. Finally, Mai et al. presented the NetAgg platform [23], which

uses in-network middleboxes for partition/aggregation operations, to provide efficient network

link utilization. Cray’s Aries network [3] implemented 64 byte reduction support in the HCA,

supporting reduction trees with a radix of up to 32. The eight byte MPI Allreduce() latency for

about 12,000 process with 16 processes per host was close to ten u-seconds.

Several APIs have been proposed for offloading collective operation management to the

HCA. This includes the Mellanox’s CORE-Direct [13], protocol, Portal 4.0 triggered opera-

tions [7], and an extension to Portals 4.0 [29]. All these support protocols that use end-point

management of the collective operations, whereas in the current approach the end-points are in-

volved only in collective initiation and completion, with the switching infrastructure supporting

the collective operation management.

2. Aggregation Protocol

A goal of the new network co-processor architecture is to optimize completion time of

frequently used global communication patterns and to minimize their CPU utilization. The

first set of patterns being targeted are global reductions of short vectors, and include barrier

synchronization, and small data reductions. As previously mentioned, the SHARP protocol has

already been described in detail, therefore, only a brief description is provided in this section,

highlighting the new hardware capability that is introduced.

SHARP provides an abstraction describing data reduction and aggregation. The protocol

defines aggregation nodes (ANs) which form the nodes of a reduction tree. These trees overlay

a physical network. Figure 1 shows an example of a physical network topology, with Fig. 2

describing a possible reduction tree constructed over this physical topology. The aggregation

nodes are colored in red, with the leaves of the tree, the blue stars, being source of the data.

Figure 1. Physical Network Topology
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Aggregation operations are defined for SHARP groups. These groups are formed as subtrees

of SHARP trees, where multiple groups may be formed from a given SHARP tree. Figure 3 gives

an example of a SHARP group of size eight.

An aggregation operation is performed with participation of each member of the aggregation

group. To initiate such an operation, members of the aggregation group send their aggregation

request message to their leaf aggregation node. The aggregation request header contains all

needed information to perform the aggregation, and includes the data description, i.e. the data

type, data size, and number of such elements, and the aggregation operations to be performed,

such as a min or sum operation. An aggregation node receiving aggregation requests collects

these from all its children and performs the aggregation operation once all the expected requests

arrive. The root aggregation node performs the final aggregation producing the result of the

aggregation operation.

This aggregation result is distributed in up to two of several possible ways. The destination

may be one of several targets, including one of the requesting processes, such as in the case of

MPI Reduce(), all the group processes, such as in the case of an MPI Allreduce() operation, or

a separate process that may not be a member of the reduction group. An aggregation tree can

be used to distribute the data in these cases.

The new hardware capability described in this paper is that the target may also be a user-

defined InfiniBand multicast address. It is important to note that while multicast data distri-

bution is supported by the underlying transport, it provides an unreliable delivery mechanism.

Any reliability protocol needed must be provided on top of this mechanism.

Figure 2. Logical SHARP Tree. Note that in the SHARP abstraction an Aggregation Node may

be hosted by an end-node

Figure 3. A SHARP group defined for the SHARP tree. The red stars designate AN’s and the

blue stars the tree leaves
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The protocol does not define the data transport, so that communication between AN’s can

occur using a range of transports, such as RDMA-enabled protocols like InfiniBand or RDMA

over Converged Ethernet (RoCE). It also does not handle packet loss or reordering, requiring a

reliable transport which provides reliable in-order delivery of packets to the upper layer.

2.1. SwitchIB-2-Based Aggregation Support

In the SwitchIB-2 implementation, the aggregation node logic is implemented as an Infini-

Band TCA integrated into the switch ASIC. The transport used for communication between

ANs and between AN and hosts in the aggregation tree is the InfiniBand Reliable Connection

(RC) transport. The results are distributed from the root to the leaf nodes, or hosts, down the

tree, or to a target InfiniBand Multicast group.

The aggregation node implementation includes a high performance Arithmetic Logic Unit

(ALU), used to perform the aggregation operations supported by the aggregation node. It can

operate on 32- and 64-bit signed and unsigned integers and floating point data. The supported

operations include sum, min and max, MPIs MinLoc and MaxLoc, bitwise OR, AND, and XOR,

which include all the operations, with the exception of the product, needed to support the MPI

standard and the OpenSHMEM specification.

Requests are collected in the TCA, with the reduction performed only after all operands are

available, in a predetermined and fixed order. SwitchIB-2 implements a predictable operation

ordering to enable repeatable results regardless of the order of arrival of the aggregation requests.

When using hardware multicast to distribute the aggregation results, the result also needs

to be distributed with a reliable protocol to ensure delivery of these results.

3. Benchmark Results

To evaluate the SHARP capabilities, both low-level MPI benchmarks, as well as an appli-

cation level benchmark are used.

A 128 host system is used for these experiments. Each node has two 14-core Broadwell

CPUs running at 2.60 GHz, with 256GB of RAM memory. ConnectX-4 HCAs are used running

at 100Gb/s. The fabric uses a two-level fat-tree with SwitchIB-2 switches and eight leaf switches,

each connecting to 16 hosts. The hosts run RedHat Linux 7.2, and the tests were carried out with

OFED 3.4-2.1.9.0. A pre-release version of HPC-X, the Mellanox supported MPI, is used, which

includes a set of MPI collective routines that access and use the SHARP hardware capabilities,

embedded in the SwitchIB-2 switches, to optimize the performance of the corresponding MPI

collectives.

3.1. MPI-Level SHARP Measurements

The OSU MPI Allreduce() test [25] is used to measure the SHARP latency.

Figure 4 shows the latency of MPI Allreduce() operations as a function of message size and

the mode of result distribution, with one process per-node. Using UD multicast for distributing

the result takes advantage of the O(1) multicast capabilities for improved performance, but

is unreliable (bit error rate being on the order of 10−15) requiring the additional RC result

distribution to provide the result when a UD packet is dropped. Using UD multicast and RC

to distribute the results improves latency in the range of 15-58% relative to using RC only for
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this distribution, even with the duplicate result distribution. The improvement relative to the

host-based approach is in the range of 143 to 385 percent.

Figure 4. 128 node MPI Allreduce() average latency with different modes of result distribution.

A comparison to the host-only algorithm is also included. Latency is reported in µ-seconds

SHARP reduction trees assume some sort of host-level aggregation prior to sending data

to the leaf AN, because of the limitation on AN’s radix. Figure 5 shows the latency of the

MPI Allreduce() operation when using one connection per socket (2 channels) into the SHARP

reduction tree, avoiding reduction over the internal chip network, and one connection per node

(1 channel). As the results show, for messages up to 1024 bytes in size, this reduces latency by

more than ten percent. With larger messages, an increase in latency is observed. The two-channel

case eliminates the host-side intra-socket reduction steps, it increases the leaf AN radix by a

factor of two. As the vector length increases, this manifests itself with a larger latency relative

to the one-channel case.

Figure 5. 128 node, 28 processes per-node MPI Allreduce() average latency in µ-seconds

To get a better understanding of the spread in completion times across the communicator,

several metrics are collected to characterize this behavior. Table 1 lists the average MPI Allre-

duce() latencies, along with quartile data, minimum value and maximum value to describe the

data distribution, using UD-multicast for result distribution, and one process per node. These

are reported for the average of the full collective operation (measured as as the average of the
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collective operation) and for the the completion of each of the individual ranks in the communi-

cator. As expected, there is greater variance in individual completion times, as compared with

the average per-collective completion time. Also, we see that the SHARP based collectives have

a much smaller per-rank latency range.

Table 1. MPI Allreduce() Latency (µsec) Distribution of a

127 Node Cluster with One Process Per Node

Size Ave. Quartiles Quartiles

(B) min, Q1, Q2, Q3, max min, Q1, Q2, Q3, max

Per Operation Average Per Process Data

SHARP 4 2.39 2.38, 2.39, 2.39, 2.40, 2.41 2.16, 2.35, 2.37, 2.41, 13.49

Host 5.09 4.99, 5.07, 5.09, 5.10, 5.13 2.34, 4.74, 4.88, 5.13, 12.69

SHARP 8 2.39 2.37, 2.38, 2.39, 2.39, 2.40 2.14, 2.35, 2.37, 2.41, 2.78

Host 5.18 5.11, 5.18, 5.18, 5.19, 5.21 2.51, 4.83, 4.98, 5.20, 15.49

SHARP 16 2.41 2.40, 2.40, 2.41, 2.41, 2.42 2.20, 2.37, 2.39, 2.43, 2.90

Host 5.26 5.20, 5.25, 5.26, 5.28, 5.31 2.48, 4.91, 5.05, 5.27, 16.15

SHARP 32 2.47 2.47, 2.48, 2.48, 2.48, 2.49 2.26, 2.45, 2.47, 2.50, 3.02

Host 5.32 5.26, 5.31, 5.32, 5.33, 5.38 2.48, 4.97, 5.11, 5.36, 13.64

SHARP 64 2.55 2.55, 2.55, 2.56, 2.56, 2.57 2.26, 2.52, 2.55, 2.57, 3.00

Host 5.98 5.72, 5.98, 6.00, 6.00, 6.04 2.70, 5.65, 5.80, 6.01, 18.38

SHARP 128 2.76 2.75, 2.76, 2.76, 2.76, 2.77 2.44, 2.72, 2.74, 2.77, 10.30

Host 6.43 6.17, 6.43, 6.44, 6.45, 6.51 3.23, 6.10, 6.27, 6.50, 13.66

SHARP 256 3.52 3.51, 3.51, 3.52, 3.52, 3.53 3.04, 3.48, 3.51, 3.54, 7.37

Host 7.55 7.38, 7.54, 7.57, 7.58, 7.62 4.19, 7.29, 7.42, 7.63, 16.36

SHARP 512 4.10 4.07, 4.07, 4.07, 4.10, 4.25 3.63, 4.05, 4.08, 4.14, 10.70

Host 9.16 8.96, 9.14, 9.17, 9.19, 9.22 4.05, 8.93, 9.04, 9.21, 24.66

SHARP 1024 5.19 5.11, 5.15, 5.18, 5.21, 5.32 4.68, 5.07, 5.15, 5.28, 7.70

Host 18.49 16.24, 17.36, 18.27, 19.60, 20.52 11.38, 17.33, 18.67, 19.52, 31.69

SHARP 2048 7.55 7.52, 7.54, 7.55, 7.56, 7.58 5.61, 7.22, 7.51, 7.80, 16.65

Host 33.47 31.33, 32.56, 33.60,3 4.27, 36.89 28.83, 32.48, 33.49, 34.25, 50.40

SHARP 4096 12.34 12.30, 12.33, 12.34, 12.35, 12.39 10.38, 11.54, 11.99, 13.06, 17.27

Host 45.99 42.60, 45.10, 46.06, 46.80, 49.49 39.15, 44.99, 45.95, 46.89, 58.68

For the SHARP capabilities to be useful in a general purpose production system, where

multiple jobs run concurrently, potentially sharing ANs, it is useful to study the systems ability

to support concurrent SHARP operations. The system’s capacity to service concurrent collective

operations is studied by running multiple collective operations at the same time, using completely

overlapping SHARP-tree groups. The OSU-latency test was modified to run concurrent collective

operations with non-overlapping MPI Communicators, with the MPI process layout configured

to achieve this overlap. As the results show in Fig. 6 for communicators of size eight, SHARP

is able to accommodate many outstanding operations very well. Latency starts to degrade at

a message size of 2048 bytes, with eight concurrent operations, where as many as sixty four

operations are in flight. With sixteen concurrent operations, latency is impacted by about 30%

with a message size of 64 bytes.
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(a) Small-size Allreduce

(b) Large-size Allreduce

Figure 6. SHARP MPI Allreduce() latency (in µ-seconds) for 128 nodes with varying simulta-

neous communicators

Table 2 presents the MPI Allreduce() latency as a function of the number of outstanding

SHARP operations each group is configured to allow. The eight byte data requires only one

SHARP-level operation per MPI operation, whereas the 2048 byte reduction requires eight

such operations. As expected, we see that the eight byte reduction is minimally impacted by

the number of allowed outstanding SHARP operations, except in the eight communicator test,

where there are insufficient resources for all communicators, and the test does not run as written.

The 2048 byte MPI-level operation is negatively impacted by the lack of sufficient resources to

pipeline the entire operation at once, but even with only two outstanding SHARP operations

supported, there is the benefit of some pipelining, with the latency being less than four times

that of the eight operation case.

3.2. Application Benchmarks

Table 3 shows the result of running the Algebraic Multi-Grid (AMG) [8] micro benchmark on

64 nodes, with 28 processes per node. The AMG benchmark uses an eight byte data reduction.

On average, running five of the AMG test cases (Laplace, 27 point, Jumps, def/pool1 and

def/pool0) an average improvement of 1.8% in total test run time was measured when using
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Table 2. Eight Process MPI Allreduce() Average Latency

(µsec) as a Function of the Number of Communicators

Operating in Parallel and as a Function of Maximum

Outstanding SHARP Operations (OSOs) Available

8 bytes

Total OSOs OSOs per Comm 1 Comm 2 Comm 4 Comm 8 Comm

8 1 2.24 2.263 2.260 N/A

16 1 2.210 2.253 2.260 2.238

32 2 2.210 2.245 2.250 2.236

2048 bytes

OSOs OSOs per Comm 1 Comm 2 Comm 4 Comm 8 Comm

32 2 11.890 11.990 12.154 14.991

64 4 7.695 7.783 8.374 12.229

128 8 5.495 5.533 6.710 10.351

SHARP. The figure of merit used is system-size * number-of-iterations / (solve-time in units of

seconds).

Table 3. AMG Figure-of-Merit (Higher is Better) Data for

Five Different Tests, Run on 64 Nodes with 28 Processes

Per Node, and a System Configured with Low System

Noise

Job Type Laplace 27pt Jumps Pooldist 1 Pooldist 0

non-SHARP 2.10E+09 1.64E+09 2.84E+09 2.45E+09 3.82E+09

SHARP 2.21E+09 1.68E+09 2.86E+09 2.40E+09 3.92E+09

% Change 5.2 2.4 0.7 -2.0 2.6

Discussion and Conclusions

To improve MPI-level aggregation performance, UD-Multicast is used to distribute results

from the root of the aggregation-tree, and SHARP trees that avoid using the host’s inter-socket

bus for aggregations are employed. Employing UD-multicast to distribute the aggregated values

reduces overall operation latency, even though the result is sent twice to ensure reliable delivery,

once using UD-Multicast and once with RC. The UD packets allow for fast result distribution,

with a very low packet-rate loss. The RC packets sent to ensure data delivery arrive a little later,

and impact latency only when the UD packets are lost. This improves eight byte reduction at 128

nodes by 16%, and the 4096 byte latency by 58%. The distribution using UD-Multicast benefits

from the switch’s ability to replicate the data packet to all ports relevant to the multicast group in

parallel, whereas the RC packet replication has some degree of serialization. In addition, for small

message distribution message rate, rather than bandwidth, is the primary performance limiter.

The high message rate, of 195 messages per port, per µ-second supported by the SwitchIB-2

device, is capable of handling the duplicated data.
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Using the intra-host bus for data exchange between sockets can be expensive relative to the

intra-socket communication. It is frequently more efficient to avoid using this bus when accessing

the network, and therefore a similar approach has been investigated for SHARP reductions. As

the results show, aggregating data on a per-socket basis also helps reduce operation latency for

small message sizes, reducing the eight byte operation latency by 16% at 128 nodes. However, as

the data size increases, competition for the PCIe bus bandwidth from the host to the network

and the two fold increase in AN radix at the leaf switches make this particular optimization

undesirable.

In general purpose data-centric environments, with multiple jobs running on the system

at the same time jobs compete for a fixed set of resources, unless special care has been taken

to isolate the resources used by separate jobs. In the case of SHARP the AN resources are an

additional set of resources, beyond the host and other network resources that may be shared.

The impact of such sharing on the SHARP latencies has been studied by running concurrent

reductions on the same reduction-tree and limiting the number of concurrent aggregations.

To study the effectiveness of the protocol in a multi-job scenario, where some ANs may

be used by multiple jobs, we ran up to sixteen concurrent collectives simultaneously. This is

expected to be a worse-case type of scenario, because the test forces the collective operation

concurrency. Since application runs typically are not synchronized, and they do more than

just run collective operations, the impact on concurrent running applications using the same

AN resources is expected to be less. The results show that the impact on the small message

reduction latency is small, but as the message size increases the impact of this sharing becomes

noticeable due to the competition for bandwidth. At 2048 byte message size and 128 nodes, a

small impact is noticed when two operations are running concurrently, but with four it is still

advantageous to use the SHARP protocol over the host-based protocol.

We also observed that when there are insufficient resources to pipeline a reduction operation

with independent resources, there are still benefits to such optimization when compared with

the host-based approach. A 2048 byte message size and 128 nodes requires eight OSOs for the

full message reduction to be concurrently in flight. However, providing only two such OSOs still

reduces the operation latency relative to the host-based approach.

Finally, collective operations are known to amplify application load imbalance. Looking at

the per-process spread in collective operations, we see that the SHARP based collectives are less

susceptible to imbalance within the collective algorithms themselves, thus supporting application

scalability better than the host-based algorithms.

In conclusion, this paper has introduced the ability to use UD-multicast for aggregation re-

sult distribution and presented several aspects of the SHARP protocol not previously examined.

Benchmark and application results show that the protocol is effective, and help to show how to

best utilize the underlying SHARP capabilities in a general purpose data-centric environment.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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