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The STAR protocol is proposed, which solves three inherent problems with MPI, a well

known security problem caused by data memory access faults, and the following four exascale

communication problems. Exascale systems must efficiently save the state of their Data Processor

Chips (DPCs) every fraction of a second to support rollback when an error is encountered. Exascale

systems will have the possibility of frequent optical communications failures. Exascale systems

must resiliently respond to these optical communication failures. An exascale computer needs

to be fed enough data fast enough, and its data center must keep up. Optical implementations

are developed compatible with 100 Gbit/sec Ethernet to solve these problems. Automatic fault

resilience mechanisms are discussed, which improve HPC quality of service, and meet the exascale

reliability and resilience challenges. The bandwidth problem for exascale computers interfacing

with data centers is solved. The STAR protocol enables data centers and supercomputers, to be

invulnerable to memory fault injection of viruses and rootkits.

Keywords: MPI, optical communications, exascale, HPC, security, router, memory wall, fault

resilience.

Introduction: Problems to be Solved

MPI is a standard for message passing commonly found in parallel processing systems, in

particular HPC systems [8], [17], [7],and [15]. While MPI is versatile and readily available, it

has inherent problems. Figure 1 shows sending a message in MPI. The sending of the message

locks up the buffer until the message has completed being sent. All instruction processing has to

refrain from accessing the buffer until the buffer is unlocked. Often, the core must rely upon an

interrupt structure to know when the buffer is again ready for access, implement a wait loop, or

suspend a thread. This not only slows things down, but costs energy and increases complexity

of the hardware and software operating environment.

Figure 1. Sending a message in MPI

Figure 2 shows receiving the MPI message not only locks up a buffer until the message is

received, but also for the time required to process, or move, its contents elsewhere. Making this

function efficient now requires that the operating environment know when this buffer mechanism
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can be accessed for a new operation. The operating envirnoment may use one or more of the

following: status registers to trigger an interrupt in the core; implement a second wait loop; or

suspend the thread. From an application program perspective, these operations appear to be

primitives, but they come with a large amount of overhead, in terms of instruction processing to

initiate these operations, wait for their completion and then release these resources to be used

for a new operation. All of this takes energy, hardware, and computing time.

Figure 2. Receiving a message in MPI

With MPI, messages can be any length, and a short message can be stalled by a long message

at a router transfer point, as shown in Figure 3. It should be noted that Intel has announced

a component solution to this one problem, but it does not solve all three of these MPI related

problems, much less the security, and the exascale related problems we consider next.

Figure 3. A short message stalled at a router transfer point by a long message

There is common security problem in processors derived from the PDP-11 and/or the IBM

360 [1]. A buffer is assumed to have a starting address, a length, and from this, a computed

ending address. Suppose a computer starts writing at the starting address, but writes a string

that is longer than the length of the buffer. In other situations, the writing goes toward the

start of the buffer and writes data into addresses before the buffer’s starting address. In either

case, addresses outside of the buffer are altered. For example, these addresses can hold program

instructions, pointers to code, such as the return address for a program during execution. These

data buffer access faults can, and do, inject viruses or rootkits into the instruction memory of

these processors [19]. Data fault injection turns seemingly innocent data into an injected virus,

which can then access anything in the memory domain of the injected device. While this issue

has been around for decades, it persists as a major security problem [13]. One of the earliest

examples of this ocurred in 1988, when the Morris worm, infected DEC VAX and SUN computers

running BSD Unix across the Internet [4]. This article shows how the STAR communications

protocol supports rendering this situation impossible for a data center or a supercomputer.
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Exascale brings with it four new problems.

1. Consider a Data Processor Chip (DPC) containing some increment of 20 Mbytes of internal

state. An exascale computing system [3] will probably have at least several hundred thousand

DPC’s, each containing at least 500 cores. Further assume that for any specific fault, the

system needs to be able to rollback back within a second, with an overhead of no more

than a few percent, say 2%. Consider what is required when the DPC state is captured in

a snapshot every 10 ms. Within that 10 ms, 2% of the time the DPC is saving the state,

with each DPC operating on a local 1 ns clock. (All mention of a clock only refers to a local

clock.) This implies that each 20 Mbytes must be saved in 2% of 10M clock cycles, or 200K

clocks. Therefore, for each 20 Mbytes of internal state in the DPC, 100 bytes must be saved

in a nanosecond. This is much more than the 100 Gbits/second optical fibers can support.

While rolling back by a second seems natural, the question is how much of the system needs

to roll back. By recording snapshots every 10 milliseconds, in many situations, the amount

of roll back can be limited to a much smaller fraction of the system, saving energy and

computing capacity.

2. Another problem is the failure rate for large scale optical networks. These failures can be de-

fined as any message that is received, and through analysis of its Error Detection/Correction

(EDC) envelope, is found to have detectable, but uncorrectable, errors. Failure rate is the

number of failures per unit time. The overall communication failure rate of the exascale

system [3] depends upon the failure rate for one optical fiber and its transceivers, and grows

directly (but not necessarily linearly) based upon each of the following: The number of data

channels per bundle interfacing to each of the chips; the number of optical fibers in each

channel; the number of DPCs; the number of routers needed to avoid deadlocking these

chips; and the complexity of the routers.

3. Analyses [3] of the maintenance logs of current US supercomputers indicate that the Mean

Time Between Failure (MTBF) for exascale systems may be no more than minutes. When the

optical communications fail, the system fails. With exascale systems, there is no time to rely

upon an operating system, or a distant snapshot of the communications. This led the author

to develop this multiple degree of freedom, fault resilience strategy, to be implemented in

the local communications hardware.

4. There is a another, essentially mirror problem to the first exascale problem. How does one

feed data into an exascale computer fast enough to keep it busy? This problem will be

answered later at three system component levels, first at the DPC, second at the mostly

binary topological network interfaces of the system components, and third at the cabinet to

data center interface level.

1. Introducing the STAR Protocol

It is required for STAR message protocol compliance that any compliant device transmits

and receives a STAR message on every local clock cycle, except when responding to an uncor-

rectable error upon reception. This requirement removes the three problems with MPI. Sending

a message is completed in one local clock. Receiving a message is completed and buffer released

in one local clock. Each STAR message clears each local pipe stage in the routers in one local

clock, so that no message stalls another for an unknown amount of time. The response to such

errors can involve automatic channel component replacement in, at most, a microsecond.
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Figure 4. STAR message transport layer

Figure 4 shows the application layer of the STAR message, which includes a package con-

taining a data payload and a context. The payload includes a 5 bit extension code and 128 bits

of standard payload. The context is 32 bits, which is interpreted at every STAR message core

to determine the package disposition and transfer. The context and its interpretation, is under

complete control of the program.

The transport layer of each STAR message, also includes a 35 bit Error Detection/Correction

(EDC) code. These 35 bits are arranged in clusters of 7 bits. Each 7 bit cluster relates to a

separate group of 33 bits of the package. There are five groups covering the package. These 7

EDC bits allow the system, at each receiver, to calculate a 1 bit error correction of the received

group of 33 bits. These same 7 EDC bits enable calculation of a 2 bit error detection flag for

these same 33 bits of the received package. All of these EDC calculations are required to be

performed within one, or more, locally clocked (nanosecond) pipe stages. The transport layer

supports detecting and correcting up to five single bit errors, one in each of the groups of the

application layer. The transport layer also supports detecting any, or all, of the five groups

having uncorrectable 2 bit errors. The local clock is about 1 GHz, and is readily supported by

standard CMOS, so that 200 Gbits/second can be simultaneously sent, and received, on each

STAR channel.

1.1. Exascale State Resilience and Optimized Matrix Communication

The first example of the payload format, sets the top Extension bit (Ext bit 4) to 0, and the

remaining payload is interpreted as two double precision floating point numbers, each augmented

by two bits of the extension field, used as guard bits. This format can represent a complex

number, as well as be useful in bulk downloading and uploading of the state of cores in the

DPC. Note that each of these messages is transferring 16 bytes in one clock cycle, so that 8 of

these channels delivers 128 bytes per nanosecond in and out. Recall that each DPC has some

multiple of 20 Mbytes of internal state, which required 100 bytes per nanosecond to store, and

restore, as discussed above with a reasonable overhead for application programs. This approach

makes DPC state resilience feasible. The STAR bandwidth delivery, both as input and output,
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is a necessity for keeping an exascale system fed with data, which is further discussed in the

following section on the optical implementation below.

The second format example configures Ext bit 4 as 1, and two of the other 4 bits as 0. This

can be interpreted as a double precision number and its two guard bits with an index list of

64 bits. This format has two uses. In dense matrix manipulation, such as matrix inversion by

Gaussian elimination with partial pivoting, or block LU decomposition [6], the format is used to

communicate a pivot, or potential pivot candidate. In sparse matrix manipulation [10], [16], 4

bits of the index list can act as a field identifying sixteen large objects, such as sparse matrix A

and several vectors associated with the matrix. This format configuration insures efficiency for

both dense, and sparse, matrix operations. By configuring the context of a message, the second

format can be interpreted as having more than one floating point number. For example, the

66 bits can be interpreted as dual single precision (each with a guard bit), or quad FP16 bit

numbers. Further configurations using the context, can result in these 66 bits being interpreted

as numeric values in a form of posit numbers [9]. With posit numbers, more opportunities are

potentially available, for instance, 3 posit numbers, each of 22 bits in length, or 5 posits, each of

13 bits, or 6 posits, each of 11 bits. The net result of these opportunities is that as an application

progresses in run time, it can use fewer parameters per payload, for greater precision.

2. STAR Bundle

Figure 5. Example of a STAR bundle

Figure 5 shows a STAR bundle including data channels as well as control and status channels.

There are 16 data channels, with a spare channel instance used for fault resilient recovery from

unrecoverable message faults. The control and status channels include one task and one transfer

request message channel, and a spare channel for fault resilient recovery. This example has

several positive consequences. 16 data channels guarantee that the state of the DPC can be

saved within a reasonable time overhead for exascale systems. Note that in the above discussion,

we showed that 8 channels deliver 128 bytes per local clock, so 16 channels deliver 256 bytes per

clock. This is a data payload bandwidth of 2 Terabits per second input and output of each link

(bundle interface) for every DPC, each memory controller and every link of every router in the

system. Every DPC can receive and send 32 double precision numbers on every local clock. This is

compared to the Sunway [2], with a system interface at the MPE/CPE chip of 16 Gbytes/second

= 128 Gbits/sec with a latency of 1 microsecond. The ratio of 2 Tbits/256 Gbits is roughly 16.

The Sunway is roughly 93 Petaflops of performance, or 9% of an exaflop. Delivering 16 times

the bandwidth for 11 times the performance has a reasonable expectation of reaching exascale
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system performance. The transfer request messages can remove all the main memory address

calculations from the DPCs, sending instead just the necessary parameters for the transfers. This

results in energy reduction for many programs in the DPC, by removing the address calculations

from the DPC, and placing them in the memory controllers. Task messaging is carried out

in a separate channel from data transfers and their requests, systematically separating data

from task control and configuration. Therefore, data cannot be confused with task control and

configuration infromation by these separate channels. This removes an avenue of injection for

malicious software such as viruses and root kits.

2.1. STAR Communications Network

A STAR communications network is a point-to-point network of nodes, each acting as

sources, destinations, and routing nodes, called STAR Trinary Routers (STRs).

Figure 6. STAR Trinary Router

Each STR has three bidirectional STAR bundle links to nodes, or other STR instances, as

shown in Figure 6. Each node may be a module within a chip, or a chip. The interface between

a STAR bundle and data processing circuitry, whether in an STR, or a core module, is through

a STAR bundle module.

Figure 7 shows a STAR in-chip network, including a binary graph of channel bundles,

whose nodes are interfacing through bundle modules to a core, or core modules, called the

Programmable Execution Modules (PEMs) 0 to 3. The STRs inside a chip are laid out as a

communication module paired with a module of cores as a unit. In particular, the PEM and the

STAR bundle module with the STR are laid out as a unit.

Figure 8, on the left side, shows a STAR channel core as part of STAR bundle module

1. The data STAR channel core interfaces a data channel of the STAR channel bundle shown

in the middle. This interface includes an Incoming Message Processor (IMP) and an Outgoing

Message Processor (OMP). The IMP and the OMP belong to the data STAR channel core 1.

They interface with a core, possibly in a core module, or in the PEM, or in the STR. On the

right side, each of the STAR channels of the second STAR bundle module interface through a

corresponding channel core to another core, core module, PEM, or STR, either within a chip,

or between chips.

Consider block LU decomposition [6] on a matrix with 32 million rows and columns, which

is the approximate size required by the Linpack specification for a computer to be exascale.

Assume the block size is 32 rows and columns. This matrix will be processed for eight or more
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Figure 7. A STAR in-chip network

Figure 8. Interfacing a STAR channel bundle between two bundle modules
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hours to meet the HPL standard of sustained performance of an exaflop [14]. At the start, the

probability of row swapping is essentialy certain, as there is one chance in 32 million the pivot is

in the diagonal entry. This persists for most almost all of the runtime of the algorithm, say for 32

million minus 32 of the diagonal entries. When processing of the next block column begins, that

block columns needs to be loaded, which means that almost all of the rows have been swapped.

This can be visualized as a swarm of insects all taking off and landing somewhere else in a

random pattern. These swarms of messages must be efficiently delivered. For this to happen,

each message needs to clear its inhabited pipe stage in one local clock, or the communication

clogs, and the supercomputer will fail to perform Linpack at an exaflop. Also, if even one of

these messages fails to be delivered, the Linpack benchmark may fail.

2.2. Optical Implementation of a STAR Channel

Communication in exascale systems requires optical communications for, at least, the fol-

lowing reasons.

• Assume a system includes the DPC chips arranged in chip stacks, on some form of Printed

Circuit Board (PCB) interfaced through some form of motherboard to the rest of the

system. Assume that the DPC states are stored in DRAM local to the chip stack so that

the 20 Mbytes travels no more than 10 cm to its backup store. Otherwise communications

on the PCBs is likely to clog.

• Delivering 800 bits per nanosecond into or out of one chip cannot be reasonably done with

our classic level-shifted electronic signaling. Such signaling is best represented by LVDS

(Low Voltage Differential Signal) protocols [5] for integrated circuits, which have a typical

upper limit of about 1 bit per nanosecond per coupling. These couplings typically do not

support bidirectional simultaneous signaling.

• 800 bits per clock requires at least 1600 pins, in each direction. Even in a ball grid array

for a chip 5 cm on a side, this will saturate the active logic pins.

Electronically traversing 10 cm across 800 signal pairs is an RF noise nightmare with today’s

PCB technologies. While the basic PCB layout rules of thumb say that these 800 differential

signal pairs are traveling at 1/2 the speed of light (30 cm per nanosecond) the quarter wave length

of a 1 Ghz signal is 15 cm. However, the rising and falling edges of the differential signal pair

have a large high frequency component of roughly 10% of the wavelength of the overall signal,

or about 10 GHz. This means that anything more than about 1.5 cm can act as an antenna

for the differential edges, so many of these signal paths can cross couple due to the antenna

affect [20]. These very wide signal paths are assumed to be synchonized. Thirdly, consider the

sheer number of interfaces. The roughly 500 K to a million DPC tells us, based upon the other

problems just outlined, that the electromagnetic couplings of the past are not reliable enough

for this function.

The above shows that communication between these DPC, their memory controllers in the

chip stacks, and nodes connecting these chip stacks, PCBs and motherboards need to be optical

in their transport of the data. The 100 bytes (800 bits) per nanosecond clock is 8 times the

maximum rate of 100 Gbit optical Ethernet. This bandwidth must be achieved with a multi-

fiber protocol approach. Consider multi-fiber links between these components in a HPC system

sustainably generating 1018 floating point operations per second (flops). These links are going

to require Error Detection and Correction (EDC) circuitry at each receiver for each end of

each optical fiber. These EDC circuits are going to need to respond with good, corrected or
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uncorrectable error detection status very quickly. Each transmitter and receiver side circuit is

going to have to fix itself locally, save and restore the communication stream disrupted by the

detected error, and keep track of what was sent until it is certain that it was correctly received.

Again, all of this needs to be local to its side of the link, or else the system can clog. Consider

the individual messages communicated on a STAR message channel.

Figure 9. Example of fault resilient STAR optical implementation

Figure 9 shows an implementation consistent with today’s 100 Gbit Ethernet opto-

transceivers, using four optical fibers and associated transceivers, between two STAR channel

cores. The STAR channel cores each interface to this single STAR message channel, which sup-

ports four degrees of freedom in automated, local, fault resilient response to an uncorrectable

received message fault. In the best of situations, during normal operations, two transceiver pairs

can be operated locally at 130-140 GHz for 100 Gbit/sec transfers across two of the optical

fibers, delivering a STAR message every nanosecond to collectively deliver 200 Gbits per second

across the two fibers as the first degree of freedom in the fault resilience strategy. In other situa-

tions, three transceiver pairs are operated locally at 100 GHz, for 66-70 Gbit/sec to collectively

transfer 200 Gbits/sec across three optical fibers delivering a STAR message every nanosecond,

as shown in Figure 10 as the second degree of freedom. Consider implementations where each

STAR message is delivered by one optical fiber and its corresponding circuitry. The local STAR

channel core, either receiving a message with an unrecoverable error, or in transmitting that

message, can directly determine which fiber, and circuitry, failed. This information can be used

by both sending and receiving STAR channel cores to resiliently respond to the error.

TS k stands for the Training Sequence of STAR message k, fork=1:7. In communication

protocols, a training sequence refers to a known sequence of channel states which are transmitted

to ”train” the synchronization circuitry, such as phase locked loops or delay locked loops. The

training sequence is often incorporated into each message or burst, to account for timing drift

between the transmitter and the receiver. Note that all four optical fibers in Figure 9, can be

operated to deliver the STAR message on every local clock cycle as the third degree of freedom in

the communication fault resilience strategy. This has been not been shown in detail, but operates

much the same as in Figure 10. To summarize, when everything is working optimally in a STAR

optical channel, two of the four optical fibers are operated to achieve the collective delivery of a

STAR message every (local) nanosecond. When the pairs of fibers and components are not able

to operate at 130-140Ghz, a component trio operates at a lower frequency as outlined in Figure

10. When the trios can no longer operate in this fashion, then all four optical fibers and their
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Figure 10. Transmitting and receiving STAR messages using three optical fibers

transceivers are operated at a second, lower frequency to collectively deliver the STAR message

every nanosecond.

Figure 11 shows some of the details of the STAR channel cores supporting the interactions

within this STAR channel. While there are four optical fibers being operated, each fiber supports

communication in each of two channel directions, labeled channel directions one and two. During

normal operations at the receiver in STAR channel core 1, ER1 in the upper left hand corner

is not asserted, and the incoming selector selects the received message from channel direction

one, shown along the left side. At the transmitter in STAR channel core 2 near the bottom, the

outgoing selector stimulates the OMP 2. Consider the automated response when operating all

four optical fibers fail in one direction. The faulty link, from transmitters to receivers in that

one direction is automatically replaced by the spare optical fibers and circuitry in that direction.

Figure 12 shows the interactions in one channel direction, and in the spare channel direction,

in greater detail. During normal operation, OMP 2 is stimulated with the package and the

context from the outgoing context generator, unless the resend queue has a backlog. When the

resend queue has a backlog, the package and context is sent from the queue directly, and any

newly generated package and context is added to the existing resend queue. During normal

operations the package and context are logged at the resend queue, in case this message fails to

be received correctly. Assume the receiver’s EDC pipe detects that the received message has an

uncorrectable error. This indicates the received message is fatally flawed.

When the EDC pipe reports the uncorrectable error, ER 1 is asserted and a source error

message is sent by one or more of the control and status channels from the destination to the

source. When all four of the optical fibers for this message channel are already in use, the

link treats both source and destination as tainted in this direction. Up until all four optical

fibers are in use, the link will attempt repair by using either a different combination of optical

fibers, or more optical fibers while operating at a slower local clock, at both the source and the

destination. Assuming that all four optical fibers are in use, both the optical fibers, the source

and the destination circuitry are replaced by the spare channel resources in the same direction.

The operations, when completed, have replaced the left side of Figure 12 with the right hand

side. This is the fourth degree of freedom in the communication fault resilience strategy.

Components, such as the DPC, typically have a binary tree interface for the STAR network

as shown in Figure 7. Figure 13 shows a different level in a system, where binary trees are shown
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Figure 11. Interaction between two STAR channel cores across the four optical fibers

on the left as Link 1 and Link 2. If the whole system was composed entirely of these binary tree

interfaces, the HPC components would be vulnerable to bottlenecks. Extending the network to

a Mostly Binary Tree through the network and operation of STRs to form the PCB interface at

Link3 and Link 4, enables optical PCBs etc., to have dual, or better, STAR bundle interfaces,

eliminating the bottlenecks. This is another level in the understanding of how to keep an exascale

computer fed with data.

Consider the communication between one of these supercomputers and its data center.

The management requirement for such a communications interface is that it does not stall the

supercomputer, and can keep up with its output. Figure 14 shows using the mostly binary STAR

network to allow one cabinet to provide 15 or more STAR bundles to interface with the data

center. Using these STAR bundles, each cabinet can use the 16 STAR data channels per bundle,

each with 4 Ethernet optical fibers through the STAR bundle to ethernet nodes, as shown. This

supports the cabinet simultaneously communicating with 500 or more Ethernet networks (15
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Figure 12. Detailed view of STAR channel core 1 interacting with STAR channel core 2

Figure 13. STAR binary tree components extended to make a mostly binary network component

bundles*16 channels/Bundle * 4 fibers/channel= 960), each with 100 Gbit/second bandwidth.

This delivery resolves the communication bandwidth requirements to, and from, supercomputers

for years to come. Note that this is the third level needed to understand how to keep an exascale

computer fed with data.
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Figure 14. Cabinet to data center communications with the mostly binary STAR network

3. Transforming Today’s Vulnerable Data Center

Today’s data centers need to interact with something like the world wide web or the internet,

let’s call it a merged data and task-instruction external stream shown in the top right corner

in Figure 15. The interactions can be regimented so that data communications go through an

external data portal and the task-instruction related communications go through an external

task portal. Further, one portal’s communications cannot be intercepted by the other portal.

There are a number of options for achieving this, such as different physical transport layers,

differing communications protocols, and distinct encryption mechanisms, any, and all, of which

can be implemented.

Second, the data center’s internal communications are systematically segregated into one,

or more, data related networks and task-instruction related networks. Each of these segregated

networks has its own memory controllers. Each of these memory controllers only handles one

of the two segregated information types. The data memory controller communicates between

the internal data network and the various data related drives, DRAM and SRAMs. Also, the

internal data network communicates only across data related channels to invulnerable handheld

devices and invulnerable networked sensors [12]. The task-instruction memory controller only

communicates between the internal task network and the task related drives, DRAMs, and

SRAMs. Also, the internal task network communicates only across task-instruction information

channels with the invulnerable handheld sensor and invulnerable handheld devices . Third,

the cores, core modules, PEMs, or chips, separately communicate with the task-information

messages, and the data-related messages, delivered by these segregated internal networks. These

cores, core modules, etc. cannot alter their instruction memory nor their task control based

upon data memory comminucation or access. With this approach, the data center of the future

can be constructed to systematically exclude the possibility of data memory faults triggering

the injection of viruses and root kits.

4. Summary

The STAR message protocol solves, or enables the solution of, each of the following problems:

• Sending an MPI message locks up a buffer until the message has completed being sent.

• Receiving an MPI message locks up the buffer until the message is received and it has

either been processed, or cleared from the buffer.

• Short messages can be stalled by long messages at a router transfer point in MPI.
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Figure 15. Tomorrow’s invulnerable data center

• The common data memory fault security problem, which can inject viruses and rootkits

into a computer system.

• The bandwidth problem involved in saving the state of DPCs in exascale systems.

• The data center problem of feeding enough data into, and out of, an exascale system so

the exascale system is not stalled.

• The failure rate problem for optical communications in exascale systems.

• The fault resilient response to uncorrectable errors in a received optical message.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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