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The mobility and maneuverability of winged insects have been attracting attention, but the

knowledge on the behavior of free-flying insects is still far from complete. This paper presents

a computational study on the aerodynamics and kinematics of a free-flying model fruit-fly. An

existing integrative computational fluid dynamics (CFD) framework was further developed us-

ing CUDA technology and adapted for the free flight simulation on heterogeneous clusters. The

application of general-purpose computing on graphics processing units (GPGPU) significantly ac-

celerated the insect flight simulation and made it less computational expensive to find out the

steady state of the flight using CFD approach. A variety of free flight scenarios has been simulated

using the present numerical approach, including hovering, fast rectilinear flight, and complex ma-

neuvers. The vortical flow surrounding the model fly in steady flight was visualized and analyzed.

The present results showed good consistency with previous studies.

Keywords: insect flight, free flight, general-purpose computing on graphics processing units

(GPGPU), computational fluid dynamics (CFD), flapping-wing aerodynamics.

Introduction

Winged insects were the first animals to evolve flight locomotion. It is common to find them

hovering, flying sideways, landing up-side down, and executing rapid changes in flight speed and

direction. The capability of flight significantly contributes to insect diversity and abundance,

as it has permitted access to various ecological resources and rapid escape from predators. The

unparalleled mobility and maneuverability of winged insects have long captured the interest of

researchers in the area of biomechanics and aerodynamics. It is believed that, by explaining the

biomechanics of insect flight, scholars can yield insight to morphological evolution of insects and

their ecological roles.

In the past decade, several unsteady aerodynamic phenomena have been discovered to be

responsible for high agility and lift enhancement of flapping wing insect [12]. With the develop-

ment of CFD methods, and the continuous improvement of computing technology, it has become

feasible to study free flying insects and to visualize and analyze the complex unsteady aerody-

namics using numerical approaches [9, 13]. The use of CFD provides a convenient approach to

model various natural flapping wing flyers, since the geometries of the flyers and the environ-

ment the flyers encounter can be easily altered in a CFD model once it has been developed.

Sun & Wang [14] adopted CFD simulation results in their stability analysis of flapping wing

flight. Gao et al. [4] investigated the motion of a model fruit fly with six degrees of freedom

based on CFD computation, and simulated passive dynamic motions of the flyer under small

perturbation. They argued that an active control with sufficiently fast response is needed to

maintain the stability of the flight under disturbance. Kolomenskiy et al. [6] simulated taking

off flight of fruit-fly with two degrees of freedom using a pseudo-spectral method integrated with

a flight dynamics solver.

However, the simulation of insects in free hovering and rectilinear flight and intricate ma-

neuvering sequences remains highly challenging due to their dynamical complexities and high

computational cost [17]. General-purpose computing on graphics processing units (GPGPU) is
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an emerging heterogeneous computing technique that performs massive parallelization on graph-

ics processing unit (GPU). This technology is designed to achieve high float point operation rates

and is suitable for acceleration of numerically intensive CFD computations. Here, we adopted

the NVIDIA CUDA technology to accelerate the simulation of a free flying insect model and

investigated its long-term behaviors in different flight scenarios.

1. Numerical Methods

1.1. Governing Equations and Numerical Discretization

The dynamics of the fluid driven by flying insects is governed by the incompressible non-

dimensional Navier-Stokes (NS) equations, given here in an arbitrary Lagrangian-Eulerian

(ALE) form:

∂tu + (u− ug) · ∇u = −∇p+
1

Re
∇2u, (1a)

∇ · u = 0, (1b)

where u and p are the non-dimensional velocity and pressure fields respectively of the time-

varying fluid domain , and ug denotes the convection velocity of the computational node. The

convection velocity ug for meshfree nodes follow the movement of the boundary surfaces.

An implicit form projection method proposed in [3] is adopted in this work to advance the

above governing equations in time. The discretized form of the momentum equations (1a) is

written as:

u∗ − un

∆t
=

1

2

{[
−(u− ug) · ∇u +

1

Re
∇2u

]n+1

+

[
−∇p− (u− ug) · ∇u +

1

Re
∇2u

]n}
, (2a)

un+1 − u∗

∆t
= −1

2
∇pn+1, (2b)

where superscripts n and n + 1 denote time level. The u∗ is an approximation of the velocity

field un+1. Taking the divergence of (2b) yields the following pressure-Poisson equation, which

allows us to obtain the new pressure field pn+1 from u∗:

∇2pn+1 =
2

∆t
∇ · u∗. (3)

Boundary conditions given in [1], [16] and [17] have been implemented here to close the

above discretized governing equations. The fractional step equations and boundary conditions

are solved iteratively to advance the flow field to new time level. The pressure-Poisson equation

is solved by a hybrid Jacobi-BiCGSTAB solver to attain the solution of the pressure field pn+1.

1.2. SVD-GFD Scheme

Following the methodology developed in [3] and [15], the flow equations are solved on a

hybrid Cartesian cum meshfree grid system, wherein the body and wings of the flyer, and their

near fluid neighborhood are discretized by meshfree nodes. A set of computational mesh for a

fruit fly flyer that used in this study is shown in fig. 1. The meshfree nodes around the boundaries

convect with the motion of the body and wings. Generalized finite difference (GFD) scheme is

adopted here to approximate derivatives involved in the solution on the meshfree nodes.
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Figure 1. Schematic view of computational domain (R is the wing length of the flyer). Left:

background grid; Right: meshfree nodes around insect model

The GFD method is based on the Taylor series expansion. The three dimensional Taylor

series expansion of the function f(x) at x1 = x0 + ∆x1 is given in terms of the derivatives at

node x0 to order m by:

f(x1) = f(x0) +
∑

1≤j1+j2+j3≤m−1

∆xj11 ∆yj21 ∆zj31
j1!j2!j3!

[
∂j1x ∂

j2
y ∂

j3
z

]
+O(|∆x1|m), (4)

where ∂x, ∂y and ∂z denote the partial derivatives with respect to the coordinate variables.

If the values of the function f(x) are known at n nodes xi = x0 + ∆xi (i = 1, 2, · · · , n) in

the vicinity of the central node x0, we can obtain n equations about the derivatives [∂j1x ∂
j2
y ∂

j3
z f ]

at x0. By truncating the Taylor series after the third-order derivatives (m = 4), the equations

can form following linear system:

∆fn×1 = Sn×19∂f19×1, (5)

where

fn×1 =
[
f1 − f0 f2 − f0 · · · fn − f0

]
,

Sn×19 =




∆x1 ∆y1 ∆z1 0.5∆x21 0.5∆y21 0.5∆z21 · · · ∆x1∆y1∆z1

∆x2 ∆y2 ∆z2 0.5∆x22 0.5∆y22 0.5∆z22 · · · ∆x2∆y2∆z2
...

. . .
...

∆xn ∆yn ∆zn 0.5∆x2n 0.5∆y2n 0.5∆z2n · · · ∆xn∆yn∆zn



,

∂f19×1 =
[
∂x ∂y ∂z · · · ∂x∂y∂z

]T
f |x0

.

Should the matrix S be a non-singular square matrix, an approximate solution of the deriva-

tives ∂f19×1 at the central node may be determined by ∂f19×1 = [S−1
n×19]∆fn×1 with formal

accuracy of O(|∆x|3) and O(|∆x|2) for first order and second order derivatives, respectively.

This involves finding the pseudo-inverse of the coefficient matrix S. However, S tends to be ill-

conditioned due to irregular arrangements of the neighboring nodes, especially when two or more

nodes in the neighborhood are located very close to each other, making its inversion impossible

to be implemented in practice.
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The least-squares method and singular value decomposition (SVD) technique are classical

approaches that give the best-fitting solution/approximation for over-determined systems. In

the present 3D simulation, we implemented the SVD-GFD method presented by [1]. In the

algorithm, a regularization of the solution by setting the very small singular values of S to zero

is performed in order to avoid ill-conditioning. The system may become under-determined when

the small singular values were omitted, but the SVD method ensures a solution with minimum

L2 error can be obtained. The SVD scheme with regularization has been found to be robust and

accurate in the practice of 3D simulations for natural flyers and swimmers [11, 17, 18].

1.3. Nodal Selection

To minimize the approximation error caused by arbitrary node distribution in the meshfree

cloud, we adopted a minimum of 40 supporting nodes in the computation of ∂f19×1 for the

central node and applied a novel nodal selection criterion to improve the configuration of the

supporting nodes. In the current scheme, all neighboring nodes inside a predetermined support

region are collected as candidates for supporting nodes and are sorted in distance order, from

the closest to the furthest. A sphere with radius rinf and a cone with angle α are assigned to

each node including the central one as its zone of influence (fig. 2):

rinf =





rinf0, for central node,

r0 sinα, for nodes with r̄i ≤ r0,
r̄i sinα, for nodes with r̄i > r0,

(6)

Figure 2. Schematic drawing showing region of influence of nodes A and B in the neighborhood

of central node C

Moreover, it was pointed out that all the supporting nodes should be visible to the central

node to ensure that the derivatives can be correctly discretized [11]. As defined in geometry, a

supporting node is visible to the central node if the line segment that connects them does not

intersect any boundary surface. A visibility check base on ray-casting algorithm is applied on the

nodes close to a sharp edged object or a thin air foil like the insect wing, as their candidate nodes

are probably selected across the boundary surface. As shown in fig. 3, the selected supporting

nodes satisfy the visibility criterion for nodes near solid surface.
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Figure 3. Resultant supporting nodes (blue) of central nodes (red) near solid surface

2. Implementation

The motion of the model insect in free flight is motivated by aerodynamic forces and is

subject to Newton’s law. With the rigid body assumption, a flapping wing flyer in free flight can

be treated as a multi-body system that has six degrees of freedom (6-DoF). The wing mass of

fruit fly (D. melanogaster) is about several micro grams and contributes to less than 0.5% of the

total mass [2]. Hence, we here ignored the wing mass of the model fruit fly in the present study.

Moreover, we supposed that the density of insect body is homogeneous, and computed the fly’s

inertia tensor and centre-of-mass (CoM) based on this homogeneous density distribution. The

equations of motion for the 6-DoF flight are given by:





mV̇C(t) = mg + FA(t)

ẊC(t) = VC(t)

L̇C(t) = MA(t)

Θ̇C(t) = K(t) · ωC(t)

, (7)

where VC , XC , LC and ΘC denote the linear velocity, body position, angular momentum and

body orientation vector of the flyer at its body centre-of-mass (CoM) C in the global frame,

respectively, K is a transformation matrix, ωC is the flyer’s angular velocity determined by its

angular momentum and moment of inertia, g is the gravity vector, and FA and MA are the

aerodynamic forces and moments acting on the model fly respectively.

The CFD scheme presented in the last section was adopted here to resolve the flow field

surround the flapping wing flyer, in order to model the aerodynamic forces from the pressure and

viscous stress acting on the flyer surfaces. The surface configuration Γ(G(t)|VC ,XC ,ωC ,ΘC) is

time-dependent and comprise information about the geometry of the model fly (body and wings)

G(t) in its body frame as well as the information on the state of motion ξ = [VC ,XC ,ωC ,ΘC ]T

of the flyer in the global frame. Γ(t) determines the boundary condition in the CFD computation

while is in turn solved from (7) using the resultant aerodynamic forces. Hence, the solution of

Γ(t) involves fluid-body interaction (FSI) and is essentially an implicit problem.

This FSI problem was solved through a fixed-point iteration on Γ(t) using a predictor-

corrector method based on the 4-step implicit Adams-Moulton scheme in the present study. The

reason why multistep methods were selected is that evaluating aerodynamic forces by the CFD

method in intermediate steps requires extra computing time and storage, and the time step
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size used in the CFD part is small enough to ensure stability of the selected multistep method.

Moreover, the consistent time integration intervals allow the iterative projection method in

CFD part to be embedded into the 6-DoF motion solver to achieve a tightly coupled fluid-body

interaction simulation.

The calculation procedures are listed below and showed in fig. 4 in details:

1. Predicator step (P): at time step n + 1, compute the current dynamic state of insect ξn+1

from the previous dynamic state using the 2-step Adams-Bashforth scheme:

ξn+1,0 = ξn + ∆t

(
3

2
ξ̇
n − 1

2
ξ̇
n−1
)

; (8)

2. Evaluator step (E): update the flow field state Φ from Φn to Φn+1 using the CFD solver with

boundary conditions given by ξn+1, then evaluate ξ̇
n+1

from the latest available solution of

Φ;

3. Corrector step (C): correct ξn+1 using the 4-step implicit Adams-Moulton scheme:

ξn+1,j = ξn + ∆t

(
3

8
ξ̇
n+1,j

+
19

24
ξ̇
n − 5

24
ξ̇
n−1

+
1

24
ξ̇
n−2
)
. (9)

The above algorithm ran in iterative P(EC)kE mode, with one predictor step and k corrector

iterations, to solve the rigid body dynamics of insect flight.

 Predicator

If j≥kC 

Evaluator

Evaluator

No

0j 

Corrector

j=j+1

1

1

( , ) ,  ( , ) ,...n n

t n



 

ξ ξ ξ ξ

Start

1j 

1,0 1 1compute ( , ) , update [ , , , ]  and .n n n

C C

  ξ ξ V X Θ ω

1 1

1, 1 1, 1

1,

update flow field with [ , , , ]  and ;

compute areodynamic loads used in  ( , , );  

compute  .

n n

C C

n j n j

n j

f t

 

   



V X Θ ω

ξ ξ

ξ

1, 1 1compute , update [ , , , ]  and .n j n n

C C

  ξ V X Θ ω

End

Yes

1, 1 1accept  as , update flow field, compute .n j n n  
ξ ξ ξ

Figure 4. Schematic of predicator corrector solution procedure in one time step

The CFD solution in the Evaluator step was orders of magnitude more numerically intensive

than other calculations in the present in-house code. Hence, the in-house OpenMP parallelized

code was re-programmed with CUDA technology to exploit the capability of modern heteroge-

neous clusters.

Parallelization of the CFD computations was straight forward due to semi-implicit nature

of the projection method given by Equation (2a) and (2b), and the BiCGSTAB method for
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the pressure-Poisson equation (3). However, the SVD algorithm executed on each meshfree

node required heavy numerical workload on individual one and was not yet re-programmed

into reliable and efficient GPU code. However, the SVD algorithm executed on each meshfree

node generated significant numerical workload that has still not yet been re-programmed into

reliable and efficient GPU code. Hence, the SVD calculation of the CFD solver was performed on

CPUs only in present simulations and was one aspect of the computation that could be further

improved upon.

3. Results and Discussion

3.1. Benchmarking Cases

The parallel code was performed on the heterogeneous cluster of the National Supercomput-

ing Centre of Singapore with the NVIDIA Tesla K40 accelerator installed. Additionally, an Intel

Xeon E5 Workstation with the NVIDIA Tesla K20c accelerator was used for debugging and

benchmarking purposes. Benchmarking computations were conducted on the Xeon E5 Work-

station using three different mesh systems shown in tab. 1 (Mesh size: Set 1<Set 2<Set 3).

From fig. 5a-c, it can be seen that the parallelization and the GPU acceleration greatly speedup

the nodal search process and fractional step iteration in above CFD scheme. The GPU speedup

increased with the size of the Cartesian mesh, because time used for data transfer between CPU

and GPU became less important with increasing computation time. The drop of speedup in

node search may be explained by the increasing overhead of memory operand in larger array.

The time for the projection method calculation with GPU acceleration is about half of compu-

tation using only 12 threads of CPU parallelization. Considering the wall-time elapsed during

one complete FSI iteration, the advantage of GPU acceleration is more impressive when the

grid size is large (fig. 5d), due to the computational bottleneck caused by the SVD procedure

executing on CPUs. In general, the current GPU-accelerated solver allowed us to complete the

simulation of about 100 wingbeats of the free flying insect in forward flight within a week time.

This significant reduction of computational time made possible by the using of GPUs allowed

us to obtain the long-term quasi-steady state of the model insect in free forward flight.

Table 1. Details of benchmarking mesh sets

Set 1 Set 2 Set 3

Cartesian grid 125× 125× 245 161× 161× 161 221× 221× 221

Meshfree nodes 40039 31863 31863

We adopted the experimental results in [10] to validate the CFD scheme presented in this

paper. In the experiments of Muijres et al. [10], the forces on the insect wings were estimated

from a scaled robot wing and normalized to the fly scale using F ∗ = F/mg with a body mass

of m = 1.8 mg. Compared to their unfiltered experimental data, our numerical results closely

tracked the build-up and decrease of forces, and correctly captured major force peaks and troughs

in the whole wingbeat (see fig. 6). The mean lift obtained in the present CFD simulation was

13.5% higher than the experimental results, while a 9.7% surplus was obtained on the mean

drag. This relative error between experimental and numerical results agreed with the previous

numerical studies [9, 11, 17], and it may caused by the oscillation/flutter of the robotic wing

due to its imperfect rigidity and slips within the actuator mechanisms. This agreement indicates
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Figure 5. Performance of parallel code

that the present GPU-accelerated CFD solver can predict the force generation of insect wings

with sufficient accuracy for our purpose.

Figure 6. Comparison of computational forces of a fruit fly wing executing natural wing motion

at Re=115 with experimental results from [10]

3.2. Flight Simulations

The present numerical method resolves the full details of temporal dynamics of the flow

field, and provides us a convenient way to visualize and quantify the 3D flow field produced by

the flapping wings.

In hovering flight, the wings shed a copious amount of vorticity into the surrounding

air. These took the forms of a leading-edge vortex (LEV), a wing-tip vortex (WTV) and a

trailing-edge vortex (TEV) - identified by the regions on the wing where they are generated as

shown fig. 7a. The vortices connected with each other to form a vortex ring (VR) on the wings
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. The present results show that there existed a strong spanwise flow on the flapping wing in

hovering flight. As suggested by previous studies [5, 7], the spanwise flow that may drain energy

from the LEV, and thus limited its downstream chordwise development and prevented the wings

from stalling. However, the increase of non-dimensional spanwise velocity, u∗span, from the wing

root to the middle wing-span also suggests that the spanwise flow may stretch the LEV along

the wing and hence helped to prolong the attachment of LEV [8]. In fact, as u∗span decreased

in the distal section of the wing, the LEV soon detached from the wing surface. The spanwise

flow may also confine the development of the TEV near the wing root which formed sheet-like

vortices.

Figure 7. Vortices on the flapping wing obtained in hovering flight. Left: stream traces and

iso-surface of λ∗2 = −80; Right: u∗span contours and λ∗2 iso-lines

In forward flight, the wing stroke plane of the flyer is typically rotated forward to generate the

requisite wing thrust, while the body is pitched forward to reduce aerodynamic drag. The quasi-

steady posture of the flyer and the stroke angle are speed-dependant and ultimately governed

by the balance of forces and moments acting on the whole flyer. Overall, the bulk of thrust

was produced during the upstroke of a wingbeat, while the bulk of lift was generated by the

downstroke. As shown in fig. 8, the vortex wake behind model fruit flyer in 60 cm/s flight - the

near wake contains vortex rings shed by the up- and down-strokes, which eventually decayed to

form a pair of travelling vortex tube (TVT) further downstream.

The shedding vortices become even more complex when the insect flyer is executing fast

maneuvers, as the large body motion of the flyer interfered directly with the shed vortices in

the wake. A simulation of fast banking flight has been carried out in this work. The insect was

controlled to turn to its right side from steady hovering state in the banking flight. As shown

in fig. 9, the wings of the rolling model fly collided with the stacked VRs and broke them down

into disconnected vortex tubes. There were two highly stretched vortex tubes existing in the

wake. During the fast rightward rolling, a strong vortex ring was created in the wake below the

left wing (see fig. 9c) and the vortex moved towards the left side of the flyer (fig. 9b d). This

vortex ring conveyed the lateral momentum induced by the rolling motion, and is noted as the

rolling vortex. Thereafter, the downstroke WTV created on the right wing was greatly elongated

to form a yawing vortex during the fast yawing phase, and remained visible in the flow field till

the fifteenth wingbeat (fig. 8e f). The transient structure of the vortex wake soon decayed and

evolved into the normal hovering wake after the flyer re-stabilized itself in a new hovering state.
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Figure 8. Shedding vortices (VR-Dn (—) and VR-Un (· · · )) on 80 cm/s forward flight showing

by λ∗2 iso-surfaces (light blue λ∗2 = −0.18, dark red λ∗2 = −1.8)
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Figure 9. Development of vortex wake in banking flight (banking from steady hovering), showing

by λ∗2 = −1.8 iso-surfaces obtained at the mid-downstroke. (BD: insect body; LW: left wing;

RW: right wing)
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Conclusions

This paper presents a numerical study on the flapping-wing free flight of a model fruit-lfy (D.

melanogaster). The simulations were carried out with a coupled CFD/6-DoF motion solver on

a 3D Cartesian-cum-meshfree grid by an SVD-GFD computational scheme. The study covered

a variety of flight scenarios including hovering, forward flight and banking maneuvers. Unlike

most previous insect flight studies, the model insect was allowed to move freely in all the six

degrees of freedom. The computationally-intensive simulations were expedited by the application

of CUDA-based GPUs, which greatly accelerated the speed of the CFD (Navier-Stokes) solver

over that of the original CPU parallelized code. The gains in turnaround time were particularly

significant and beneficial of highly prolonged simulations carried out to investigate the long-time

quasi-steady performance of certain flight states, such as hovering and long-distance forward

flights. The simulations allowed us to probe the complex aero-cum-body dynamics in flapping

wing insect flight, and to study and refine control strategies and algorithms to achieve steady

flight and complex aerial maneuvers.

The present computational simulations reveal the complex vortical wakes created by the

wings of the model insect. The strong LEV, TEV, and WTV shed by the flapping wings domi-

nated the highly complex near-wake of the flyer. An even more complex wake system enveloped

the model insect in sharp maneuvering flights, where the wings may directly interfere with the

shed flow structures. These flow structures are governed by the kinematics of the flapping wings

and the motion of the flyer; and their analyses will help us to better understand the underlying

physics. In level forward flight, the vortex wake in the rear of the model insect may decay into

a pair of trailing vortices, similar to those frequently observed behind airplanes in flight.
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