
Workflows for Science: a Challenge when Facing

the Convergence of HPC and Big Data

Rosa M. Badia1,2, Eduard Ayguade1,3, Jesus Labarta1,3

c© The Authors 2017. This paper is published with open access at SuperFri.org

Workflows have been traditionally a mean to describe and implement the computing experi-

ments, usually parametric studies and explorations searching for the best solution, that scientific

researchers want to perform. A workflow is not only the computing application, but a way of

documenting a process. Science workflows may be of very different nature depending on the area

of research, matching the actual experiment that the scientist want to perform. Workflow Man-

agement Systems are environments that offer the researchers tools to define, publish, execute and

document their workflows.

In some cases, the science workflows are used to generate data; in other cases are used to

analyse existing data; only in a few cases, workflows are used both to generate and analyse data.

The design of experiments is in some cases generated blindly, without a clear idea of which points

are relevant to be computed/simulated, ending up with huge amount of computation that is

performed following a brute-force strategy.

However, the evolution of systems and the large amount of data generated by the applications

require an in-situ analysis of the data, thus requiring new solutions to develop workflows that

includes both the simulation/computational part and the analytic part. What is more, the fact

that both components, computation and analytics, can be run together will enable the possibility

of defining more dynamic workflows, with new computations being decided by the analytics in a

more efficient way.

The first part of the paper will review current approaches that a set of scientific communities

follow in the development of their workflows. This paper does not intent to be exhaustive in the

compilation of different approaches available to develop and deploy workflows. We focus on the

Workflow Management Systems used by a set of scientific communities and their representative

use cases, with the objective of understanding their different needs and requirements. The second

part of the paper proposes a new software architecture to develop a new family of end-to-end

workflows that enables the management of dynamic workflows composed of simulations, analytics

and visualization, including inputs/outputs from streams.

Keywords: workflows, scientific applications, Big Data.

Introduction

Workflows appeared last century and have been used in the manufacturing industry as a

mean to optimize their processes. Examples of traditional (non-IT) workflows can be found in

the assembly lines, i.e., the Ford Model T assembly line standardized the production processes

and was the first continuous delivery pipeline for the automotive industry. This process reduced

the costs of manufacturing from $850 to $260 in 1924.

The time and motion studies defined by Taylor [52] and Gilbreth [41] had significant impact

in the manufacturing processes. These studies proposed to break manufacturing activities into

small, simple steps, to determine with accuracy the amount of time required to perform each of

the steps. Then, the sequence of movements taken by the employee has to be carefully observed

to detect and eliminate redundant or wasteful motion, and the precise time invested for each

correct movement is measured. From these measurements, production and delivery times and

1Barcelona Supercomputing Center (BSC), Barcelona, Spain
2 Consejo Superior de Investigaciones Cient́ıficas (CSIC), Madrid, Spain
3 Universitat Politècnica de Catalunya (UPC), Barcelona Spain

DOI: 10.14529/jsfi170102

2017, Vol. 4, No. 1 27

prices can be computed and incentive schemes devised. Methods used in these early times were:

Flow diagrams, Gantt charts, and ERT charts.

Although the term workflow was not used at that time, the same concept is used in current

Workflow Management Systems, a software system that is able to orchestrate a set of tasks.

The tasks show dependencies between them, which can be of data or control, forming a task

graph or workflow. The concept of workflow is used extensively in a large number of scientific

communities.

Scientific users have a plethora of Workflow Management Systems available for their needs.

Traditionally different communities stick to a system or to a set of systems for different reasons:

due to the needs of the community applications, due to the popularity of given systems, due

to historical reasons, to availability of domestic systems that are adopted by others and later

extended, due to the possibility of sharing, avilability of specific functionalities that are needed

by the community applications not present in others, etc. However, we believe that aspects such

as modularity and elegance of the design, portability, genericity of the systems; should be given

more attention.

The paper takes into account a set of Workflow Management Systems used by given scien-

tific communities to implement their workflows: life science (genomics), earth-science (climate),

fusion, and astrophysics. For each of them an example of how the workflows are defined and the

specific features they have is described.

It is very usual that these scientific applications generate a large amount of data, and this

is in-crescendo. Also, the use of parallel systems and High Performance Computing (HPC) is

every time more usual. Traditionally, the phases of computation/simulation of these workflows

have been decoupled from the phases of data analysis. Also, traditionally workflows are defined

quite statically, even loops are possible, but no margin for dynamicity on the decision of what

computations should be performed is left.

Taking into account potential users of next coming exascale architectures, workflow man-

agement systems that support the convergence of the computation and data analysis parts are a

must. Even more, those workflows should support in-situ data-analysis and dynamism, in such

a way that results from previous analysis determine the next steps of the workflow, i.e., which

computation to trigger, searching for new alternatives or going in-depth into a more detailed

simulation.

In section 1 we give an overview of the alternatives in the implementation of a Workflow

Management System. Then, the paper is organized around the different cases that have been

chosen: section 2 describes Kepler, and its usage by the fusion community; section 3 describes

Pegasus, and the case of the LIGO collaboration that has been using this system for more than 10

years; section 4 describes Galaxy and its use in the framework of the Life Sciences community;

section 5 describes the workflow management systems used by the Earth Science (climate)

community; and section 6 describes Taverna and its use by the astrophysics community. Section 7

proposes a new architecture of end-to-end workflows with dynamic management, orchestrating

the computation and analytics of the experiments. Final section concludes the paper.

1. Workflow Management Systems: an Overview

A Workflow Management System can be defined as a software environment able to orches-

trate the execution of a set of interdependent computing tasks that exchange data between them

with the objective of solving a given experiment. A workflow can be graphically described as

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

28 Supercomputing Frontiers and Innovations

a graph, where the nodes denote the computations and the edges data or control dependencies

between them.

Workflow Management Systems became very popular with the appearance of Grid comput-

ing, since they offered the possibility of exploiting this distributed infrastructure. Papers [14, 57]

present taxonomies of Workflow Management Systems from that period. Some of the systems

developed at that time are still alive projects used in current distributed computing platforms

(either High Performance Computing (HPC) clusters, High Throughput Computing (HTC) plat-

forms, clouds or combination of several of these options).

Workflows can be described graphically, with a drag and drop interface where the work-

flow is totally specified with a graphical interface by the user like in Kepler [6],Taverna [26], or

Galaxy [3]. It can be described textually, by specifying the graph in a textual mode, indicat-

ing the nodes and its interconnections like in Pegasus [15] or ASKALON [21]. It can also be

described programmatically, using all the flexibility of a programming language to describe the

behaviour of the workflow that is dynamically built depending on the actual dependencies found

by the workflow system like in PyCOMPSs/COMPSs [32] or Swift [55]. A particular case of this

is the use of simple tagged scripts that are processed by the actual engine, like with Cylc [39],

Autosubmit [34], or ecFlow [33]. Another alternative is to describe the workflow through a set of

commands with a command interface, like with Copernicus [42]. With the objective of offering

a single syntax to describe workflows the initiative of the Common Workflow Language [7] has

appeared. The Common Workflow Language (CWL) is a working group consisting of various

organizations with interest in portability of data analysis workflows, mostly oriented to bioin-

formatics tools and with an emphasis on systems enabled with Docker. CWL offers a syntax to

connect command line tools in order to create workflows that can be used by multiple platforms.

CWL follows JASON or YAML syntaxes, or a mixture of the two.

Some systems orchestrate already deployed web services (Taverna), others compose external

binaries or tools (Galaxy), and a few are able to interoperate directly with methods described in

programming languages (PyCOMPSS/COMPSs). The data exchanged between the computation

nodes of the workflows is typically a file, although in some cases can be objects in memory (like

in PyCOMPSs/COMPSs).

A key component in a Workflow Management System is its engine. The engine is the respon-

sible for coordinating the execution of all the tasks, scheduling them in the available computing

resources and storage devices, transferring the data between distributed storage systems, mon-

itoring the execution of the tasks, etc. The information that can be obtained about the engine

in the literature is very variable: while for some systems (i.e. Pegasus, PyCOMPSs/COMPSs

or Swift) the bibliography details sophisticated engines that implement various optimizations,

either to schedule in parallel the workflow to be executed, to improve data locality, to be able

to exploit heterogeneous computing platforms, ...; for others the information is very scarce and

difficult to find.

On the user side, aspects that are valued by the scientific community are the possibility

of sharing their workflows and data, and the support for workflow provenance. Several systems

report the existence of repositories for workflows or experiments, like the myExperiment [23]

repository, which currently supports inputs from several systems (Taverna, Galaxy and Kepler),

or HUBzero [37] a software platform to support collaborations that is able to launch Pegasus

workflows.

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 29

Another characteristic of these systems is the computing platform where the workflows are

executed. As said before, many systems began their developments with the Grid as a computing

platform, and still are able to run in this type of platforms, like the OSG [40] or EGI [30]. Most

systems can execute in distributed environments (either composed of regular servers/clusters or

HPC systems), also support for Clouds is common, and some systems are starting to support

containers. While in most scientific communities the workflow tasks have been mostly sequential,

the trend in general is to take benefit of current multicore architectures and accelerators such

as GPGPUs or FPGAs, including tasks in the workflows that require some level of parallelism

although with a low degree and only intranode (up to a few threads), other communities have

been using large clusters or supercomputers for part of their workflow tasks (like in the climate

or fusion communities). The trend in general is to take benefit of current multicore architectures,

including tasks in the workflows that require some level of parallelism.

Given the amount of systems available, there have been some interoperability initiatives,

like the European project SHIWA [49] and its continuation ER-flow [18] that dealt with in-

teroperability of a dozen of workflow management systems existent at that time. The SHIWA

simulation platform consists of a repository that supports the storage of workflows and meta-

data and of a portal that includes a workflow engine able to orchestrate workflows from different

systems.

2. Kepler - Fusion community

The Kepler system [6] is free and open source, and developed, supported and maintained by

the Kepler Project [29]. Kepler is a successor of the Ptolemy II system [43], and was designed

to help users to create workflows, to perform analysis, to share and reuse workflow components,

models and data between scientists. It was not designed to fulfill the needs of a specific commu-

nity. With regard to data, Kepler is interoperable with a variety of formats, and supports local

and remote data-access. The Kepler Project claims that the system is an effective environment

to integrate software components of different nature, such as “R” scripts and compiled “C”

code, or to facilitate the remote, distributed execution of models. This is done through the Java

Native Interface and by using specific “Actors” (see below).

Kepler is based on a graphical user interface, where users select and connect the elements

that will conform their scientific workflows, from computation, analysis and data sources.

Workflow components in Kepler are called Actors. Actors may contain a hierarchy of Actors,

and in this case are called Composites. The Ports are the elements in the Actors that can receive

Tokens. Tokens may include single or multiple data or messages. The execution of workflows is

controlled by Directors in Kepler. Typically, a Director manages the execution of a set of actors.

Actors can be tuned with Parameters. Kepler was extended to be able to access streaming sensor

data and archived historical data [8]. In fig. 1 we can see a sample Kepler workflow that accesses

sensor data.

Kepler actors are executed as local Java threads, but can also spawn distributed execution

threads via web services or through the Java Native Interface (JNI). The actual execution model

of the workflow depends on the nature of the director: for example, an SDF director will imply

a synchronous execution of the workflow, where each computation node is processed one after

the other; a PN Director will imply an execution of the workflow actors in parallel.

Kepler is a Java-based application that is maintained for the Windows, OSX, and Linux

operating systems.

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

30 Supercomputing Frontiers and Innovations

Figure 1. Sample Kepler analysis workflow which includes sensor data (taken from [8])

2.1. Use of Kepler in the Fusion Community

The fusion community in Europe is organized around EUROfusion, the European consor-

tium for the development of Fusion Energy [20]. In the framework of the EUROfusion project,

the European Integrated Modelling (EU-IM) team has as objective the development of a toka-

mak simulator that considers both the physics and all the machine related data, applicable

to any fusion device. The simulation platform has been designed to be modular, flexible, and

independent of a programming language. In 2011, the community evaluated different existing

workflow engines and selected Kepler for the development of their workflows [27].

With this objective, they built a modelling infrastructure with a generic data structure

that integrates both simulated and experimental data. The elements of this data structure are

identified as “Consistent Physical Objects” (CPO). Thanks to this standardization of elements

as CPOs, modules that solve the physics can be coupled into different integrated simulations

(workflows). Also, modules describing the same physics can be interchanged within the same

workflow. Physics modules are mapped as actors of a Kepler workflow and the data transfer

among actors are performed through CPOs. Thanks to the semantic types that can be defined

in Kepler, different CPOs can be distinguished and it can be verified if the different actors

are correctly connected between them. Another feature interesting to this community is the

functionality that Kepler allows for interactive steering of simulations, enabling to pause the

simulation and reconfigure it, as well as the possibility of visualizing the present state of a

simulation with specific actors.

The applications of the EU-IM require to execute from simple orchestration of workflows

without convergence loops to tightly coupled workflows, involving mutual interactions among

different codes.

An example of tightly coupled workflow has been built by the EU-IM [22] (formerly, EFDA

ITM-TF). The European Transport Simulator (ETS) workflow [13], which couples different codes

and will enable an entire discharge simulation from the start up until the current termination

phase, including controllers and sub-systems. This workflow includes parallel components, like

the GEMHPC one, which is run in 1024 cores. GEMHPC is based in GEM, which is written in

MPI [48].

Within the project EUFORIA, the joint usage of different computing infrastructures (both

HPC and HTC) in the Fusion community was considered. The solution derived by this project

leverages and integrates different existing middleware: Kepler, as a workflow engine, which

accesses the infrastructure using the Roaming Access Server (RAS). RAS provides access to

the different underlying infrastructures using two alternative middlewares: gLite [31] and UNI-

CORE [19]. Also, interactive access to the resources is supported with i2glogin [11].

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 31

The use of the different type of resources in this project took into account that, generally,

simulations generating large amount of data will require large computing power only found in

HPC systems, while the data analysis phase can be performed as independent tasks in HTC

servers.

Figure 2. Sample Hybrid workflow from fusion community

The scenario considered in this project consisted of large simulations performed in HPC

systems and the data produced was transferred to a storage system (see fig. 2). This transfer

can be concurrent to the simulation, thus allowing to begin some of the following steps of the

workflow.

3. Pegasus and the LIGO Collaboration

Pegasus [15] is a system based on the idea that users should define abstract workflows that

include computations and information about the data without a direct mapping into the actual

compute and storage resources. In that system, workflows are described as Direct Acyclic Graphs

(DAGs), where nodes represent computational tasks and the edges represent data and control

dependencies between the tasks. The data is exchanged between tasks in the form of files. From

the abstract workflow, the actual physical location of data and executables is decided by the

Mapper, which converts the abstract workflow into an executable one, with all the information

about the location of the data files, resources where to execute the computations, etc. To locate

the resources and files, catalogs are used that contain all the information.

Pegasus Mapper modifies the initial DAG before execution, therefore, statically. Nodes can

be removed if there is data that is already available. Another optimization that Pegasus performs

is task clustering, that merges a set of short duration nodes into a single one to reduce overhead.

Some of these clustering strategies are guided by the users. The Mapper also associates jobs

with workflow engines (again statically).

The workflow can be submitted to a local computing environment, a remote physical cluster

or grid, or a virtual computing environment like the cloud.

In Pegasus, the workflow management system takes care of all the activities related to the

execution of the workflow, from job and data management, monitoring and failure handling.

Pegasus provides textual interfaces in different programming languages, such as Python,

Java and Perl, but what is described in these languages is the explicit abstract workflow, with

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

32 Supercomputing Frontiers and Innovations

information about the nodes and their interconnections. This textual input, its translated into

an XML description of the abstract workflow (DAX) which is then executed by the Pegasus

engine. The Pegasus team advocates the use of textual workflows versus graphical workflows,

since they consider that complex patters are easier to describe in this way.

Pegasus workflows can be defined in a hierarchical way, with nodes representing another

workflow. This also helps to improve scalability of the system, since Pegasus needs to parse the

whole XML file describing the DAX and for large cases this will not fit in memory. However,

each DAX is managed by a different instance of the Pegasus engine. The hierarchy is used also

in cases where the location of input files is unknown.

Pegasus has a set of execution engines with different features: single-core, which runs a

single task at a time; non-shared file system, which stages in and out the files required by each

computation; and Pegasus MPI Cluster (PMC) which is able to execute a DAG in Petascale

systems by means of running them in an architecture based in a single master and several

workers. PMC handles multi-core tasks but only within a node.

3.1. The LIGO Scientific Collaboration

Pegasus is a workflow environment that has been used for many different applications from

various fields, from genomics, climate modeling, generation of sky mosaics, neuroscience, etc.

The large collaborations where Pegasus has participated and has been key in their workflow

developments are the LIGO Scientific Collaboration [1], the Southern California Earthquake

Center (SCEC) [46] , and the National Virtual Observatory [38].

The Laser Interferometer Gravitational Wave Observatory (LIGO) is a network of

gravitational-wave detectors, with observatories in Livingston, LA and Hanford, WA. The pur-

pose of this collaboration is to prove the existence of the gravitational waves predicted by Ein-

stein’s General Theory of Relativity. To try to detect these waves, the scientists use kilometer-

scale interferometric detectors.

The data generated by the instruments is distributed on the partners’ sites, and then work-

flows are executed on the resources of their sites. Pegasus discovers the required data for each

workflow and feeds the sites with them. One example of such an application is a workflow that

searches for compact binary inspiral signals. The LIGO workflows are complex in the number of

tasks (over 1.5 million jobs) and their dependencies, and the size of the datasets being analyzed

(approximately 10 TB).

A characteristic of these workflows is that sometimes the granularity of the tasks is too small:

in these cases, the workflows benefit of the feature of Pegasus that can cluster multiple tasks

into one. Also, sometimes, some parts of the input data is recallibrated, requiring to recompute

the workflow. However, recomputing the whole workflow is very expensive and what Pegasus

offers is the possibility of registering data already being produced with the objective of not

reproducing the part of the workflow that already generated it.

While LIGO workflows were initially (2002) deployed on the LIGO Data Grid, more recently

have been extended to compute in the Open Science Grid and XSEDE. In September 2015

the LIGO collaboration detected gravitational waves. This detection was verified by processing

roughly five terabytes of data by the LIGO workflows, generating many petabytes of exported

data and executed in a distributed computing infrastructure composed of multiple HPC sites.

The PyCBC search pipeline used for this validation is composed of hundreds of thousands

tasks. Although some of the tasks are threaded (like calls to FFTW library), most of them are

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 33

sequential and short tasks. To reduce the overhead of small tasks in a large HPC cluster, the

Pegasus MPI Cluster execution engine was used to submit sub-workflows as monolithic jobs.

4. Life-sciences Community - Galaxy

Galaxy [3] is a web-based platform initially designed for life sciences workflows. It offers a

public service and a collaborative environment which enables to share, through internet, analysis

tools, genomic data, tutorial demonstrations, persistent workspaces, and publication services,

all available through internet in public repositories.

Through a web browser interface, Galaxy users can edit their workflows in a graphical editor

where workflows are created by connecting tools. A Galaxy workflow is a reusable template

analysis that a user can run repeatedly on different data; each time a workflow is run, the

same tools with the same parameters are executed. Interoperability with different programming

languages is done by invoking binaries: Galaxy supports any tool or piece of software for which

a command line invocation can be constructed. Besides the graphical interface, the users can

use BioBlend [51] a Python programmatic API to define their workflows in a textual form and

supporting more complex formats difficult to deal in a graphical way.

Galaxy has a significant community of users and developers. Galaxy pages are the principal

means to communicate research performed using Galaxy. Pages are interactive, web-based doc-

uments that users can create to describe a complete genomics experiment. This allows users to

document and publish their experiments with computational outputs, allowing others to view

the experiment with all the details and enable total reproducibility.

Galaxy enables the users to import datasets from many data warehouses. It relies on the

concept of Object Store, a file interface that acts as a layer between Galaxy and user datasets.

The Object Store supports distributed datasets and the application can exploit data locality and

submit jobs to the resource closer to the data. Also, it automatically generates and maintains

metadata about the different aspects of each analysis: input datasets, tools used, parameter

values, and output datasets.

Users can import existing histories4 and workflows, and rerun them. Also, they can modify

or extend the analysis. Galaxy’s public web server processes about 5,000 jobs per day and there

is a large number of groups not affiliated with the Galaxy team that have been using the system

to perform different types of genomic research and have published their results in prominent

journals as Science or Nature. Besides the public server, a local instance can also be deployed

in the user premises. Additional to the Galaxy server, Galaxy workflows can be executed in the

cloud through the CloudMan platform [4].

One of the drawbacks reported by Galaxy users, is the challenge of installing a Galaxy

instance [25]. This has been recently fixed by making available a Docker image.

Galaxy team is also collaborating in the definition of the Common Workflow Language

support.

4.1. Galaxy Workflows in Life Science

Galaxy is very popular for Next-Gen Sequencing data analysis since it has available a large

collection of tools for genomics and sequence analysis. Galaxy repositories [54] list on the order

of thousand tools, most of them specific to genomics and sequence analysis that are used to

4A history is a series of analysis steps

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

34 Supercomputing Frontiers and Innovations

compose the workflows. Most of these tools are sequential and parallelism is only exploited at

very low levels (for example, up to 16 cores in Stampede [5]).

With regard the data used in these workflows, it can involve many datasets of variable size.

For example, input data sets with 1 - 10 large files of 1 - 10 GB each, during the analysis other

datasets are referenced (genome datasets of 1-40 GB) and although several intermediate datasets

are produced, the final results require a relatively small amount of storage size (<100MB).

ELIXIR [17], the distributed infrastructure for life-science information partly funded by

the European Commission within the Research Infrastructures programme of Horizon 2020, is

an example of usage of Galaxy in this community. Due to the large interest of their scientific

community in Galaxy, they established a Galaxy Working Group to evaluate the technical

strategy for Galaxy within the context of ELIXIR. Between the activities performed by this

group (meetings, surveys and discussions), they generated a report with recommendations on

the use of Galaxy [12].

According to this report, Galaxy is used in that community for data intensive analysis from

different domains: Genomics, Transcriptomics, Proteomics, Systems Biology, Metabolomics, but

also metagenomics, imaging, small RNAs, etc. The popularity of Galaxy in that area is due to

the possibility that offers to users with limited or no knowledge of command line to perform

data-intensive analyses.

The users of Galaxy in this context can execute their workflows in the global Galaxy server

or in local instances of Galaxy installed in the users institutions’ or partner institutions. Most

of the institutions reported in the survey the use of a compute cluster to host the Galaxy server

(52.63%) but the amount of cores available for Galaxy jobs is surprisingly small (for most cases,

from 10 - 49 cores, and only 9% of cases more than 100 cores).

BioExcel [10], the Center of Excellence for Computational Biomolecular Research funded

by the European Commission, also has Galaxy as one of the workflow managers considered to

be used in their activities. However, in this case, other systems have been considered due to

the expertise of the partners: Taverna and PyCOMPSs/COMPSs, or the combination of two of

them, for example, using Galaxy to compose coarse grain workflows and PyCOMPSs/COMPSs

for a finer grain workflows that better exploit the parallelism of the system. Other workflow

management systems considered by this community are KNIME [9] and Copernicus [42].

5. Cylc, Autosubmit and ecFlow and the Earth Science

Community

The Earth Science community (climate) is another community case considered in this pa-

per. Three different workflow management systems were compared by this community in the

European project IS-ENES2 [28] which involved the stakeholders in Europe in that topic. The

community considered: Cylc [39], Autosubmit [34] and ecFlow [33]. Although the community

does not have a clear winner, the Met Office is using Cylc and received funding to continue

development of Cylc.

Cylc is a Python based workflow engine and meta-scheduler. According to the developers,

it specialises in continuous workflows of cycling tasks such as those used in weather and climate

forecasting and research (i.e. workflows that show iterative patterns). Cylc is also easy to use

with non-cycling systems. Cylc was created at the National Institute of Water and Atmospheric

Research (NIWA, New Zealand) and is free software under the GNU GPL v3 license.

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 35

Cylc was developed to offer a workflow management system for the weather and climate

community which based its studies on the use of complex scripts. Cylc is widely used by the

community from research to real-time operations including ensemble prediction systems.

To provide robustness when executing the workflows, Cylc dumps state files and writes

information into SQLite databases about the state of the execution. Cylc tasks can be configured

to retry a number of times on failures.

Autosubmit is a solution created at IC3’s Climate Forecasting Unit (CFU) to manage and

run the research group’s experiments. The development of this tool was a result of the lack of in

house HPC facilities that led to a software design with very minimal requirements on the HPC

that will run the jobs. Autosubmit, written in Python, provides a simple workflow definition and

is capable to run experiments on remote clusters or supercomputers and on any GNU/Linux or

Unix host. Autosubmit is currently being developed at the BSC Computational Earth Sciences

group [35].

It has some fault tolerance features, based on check-pointing the tasks that have been

finished: it keeps a list of completed tasks, and if the scheduler does not respond properly, when

restarting the experiment the process will continue from the same point. A number of given

retrials can also be defined for the different jobs that compose an experiment.

ecFlow is a workflow package that enables users to run a large number of programs (with

dependencies on each other and on time) in a controlled environment. It is used at ECMWF to

manage around half of their operational suites across a range of platforms. ecFlow checkpoint

file allows it to restart at the last checkpoint before a failure. Also, a number of retries are

supported on job failure.

The three systems have a similar input interface, based on scripts with tags, which seem

to fulfill the needs of the community to describe their workflows. Cylc and ecFlow have also

graphical interfaces to monitor the evolution of the execution of the experiments. While Cylc

and ecFlow have a Graphical User Interface, Autosubmit only has some visual features through

its monitor command.

5.1. Multi-member Climate Experiments with Autosubmit

The experiments that this community run are (multi-model) multi-member ensemble ex-

periments. These experiments are traditionally organized in multiple simulations executed for

given start dates (the purpose is to simulate weather or climate conditions on that period of

time). The complexity of each experiment can be defined by different axes: number of start

dates, number of members within a start date and number of chunks within a member.

For example, in [34] the authors present two experiments performed with Autosubmit. The

experiments involved three type of resources: the local machine where the whole experiment

is submitted, the MareNostrum3 supercomputer where the parallel simulations were run, and

a post-processing fat node. In this case, each experiment consisted of 10 members of 4-month

length for 34 start dates between 1993 and 2009 (only one chunk per member in this case). The

total experiment consisted of 340 independent cases of 4 months, which is equivalent in cost

to running a single simulation of approximately 113 years. This information is registered in an

input configuration file which is provided as input to Autosubmit – this is how the user specify

the workflow in this system.

Each simulation itself consists of several tasks: input data transfer, compilation, initiali-

sation, chunk simulation, chunk post-processing, cleaning, and results data transfer. The user

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

36 Supercomputing Frontiers and Innovations

needs to supply for each of these tasks the corresponding run scripts and the definition of how

these tasks are to be executed (execution script, reference to computing resource to execute the

task, dependencies with other tasks, number of processors required, etc).

At execution time, Autosubmit takes all the information from the configuration file and

builds a task graph that takes into account the dependencies. Autosubmit is able to execute

in parallel several tasks if dependencies between them allow it, although these type of experi-

ments tend to be highly sequential since results from previous simulations are used as input for

subsequent ones.

For each of these two experiments, Autosubmit ran 2381 jobs: 341 jobs were run in the local

machine, 1360 in MareNostrum3 and 680 in the post-processing fat node. Some of the jobs in

MareNostrum are MPI simulations using between 300-400 processors each.

6. Astrophysics - Taverna and COMPSs

Taverna [56] is another alternative Workflow Management System. Developed and main-

tained by the University of Manchester, it is currently used by several scientific communities.

Written in Java, it is composed of the Taverna Engine (used for enacting workflows), the

Taverna Workbench (a graphical desktop client application, although a command line interface

is also offered) and the Taverna Server (which supports the execution of remote workflows).

Taverna supports local and remote services, and has been used in several domains: from biology,

chemistry and medicine to music, meteorology and social sciences. The system is open source

and it is offered for windows, linux and Mac OS.

Taverna [26] was initially designed as an application to ease the use of molecular biology

tools and databases available on the web, especially web services. Taverna was designed with the

philosophy that scientists could develop their workflows of webservices already published and

then save the workflow in a repository, in such a way that the workflow can be reused and shared.

The workflows are published in a public repository in http://www.myexperiment.org [23]. The

myExperiment workflows repository does not only contain Taverna workflows, but also Galaxy

or Kepler workflows.

New workflows are built with the Taverna Workbench in a graphical way, dragging and

dropping new services in the workflow diagram and connecting their inputs and outputs. Taverna

workflows are traditionally a mixture of web services, scripts (in R, for example) and other type

of services.

In 2013 the Taverna engine was improved in order to be able to support scalable processing

of large data sets, and to be capable of performing implicit iteration, looping and streaming

of data. It was also at that time that the Taverna server was introduced, in order to support

distributed execution.

The workflows can be executed on local machines or in distributed computing infrastructures

(supercomputers, Grids or cloud environments), through the Taverna Server. An installation of

the Server provides access to a collection of workflows (normally through a web interface, called

the Taverna Player). However, in this execution mode users cannot edit the published workflows

in the Server, neither add new workflows to the set of workflows deployed in the Server.

Another feature of Taverna is the possibility of tracking provenance: the Taverna engine

records service invocations, intermediate and final workflow results. Also, Taverna supports

nested workflows.

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 37

Figure 3. Sample Taverna workflow that implements Blast Align and Tree (taken from [56])

6.1. Implementing Two-level Workflows for Astronomy with Taverna

and COMPSs

The astrophysics community is facing a huge challenge both in terms of computing and

data with the Square Kilometer Array (SKA [50]), where they expect to reach data rates in

the exascale domain. They expect up to 10 exabytes of data per day, and are planning to build

an exascale computing platform that can deal with this amount of data and that it is able to

process it, sometimes in near real-time.

Taverna has traditionally been used in this area, however, since recently the exploitation

of distributed computing infrastructures with Taverna was quite limited, and in general the

exploitation of the parallelism is not the strong point of the environment. An alternative imple-

mentation of workflows, was considered in [45], with the combination of workflows at two levels:

first level driven by Taverna and a second level driven by COMPSs.

COMPSs [32, 53] is a framework which aims to ease the development and execution of

parallel applications for distributed infrastructures, such as Clusters and Clouds. A COMPSs

application is composed of tasks, which are annotated methods. At execution time, the runtime

builds a task graph that takes into account the data dependencies between tasks, and from this

graph schedules and executes the tasks in the distributed infrastructure, taking also care of the

required data transfers between nodes. COMPSs is written in Java, and supports applications

in Java, Python and C/C++. Between the features of COMPSs, we find that the workflow can

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

38 Supercomputing Frontiers and Innovations

be composed of tasks that are regular methods or web services, and that the whole COMPSs

application can be published as a web service.

Another feature of COMPSs is that their applications are agnostic of the actual computing

infrastructure where they are executed. This is accomplished through a component that offers

different connectors, each bridging to each provider API. COMPSs can run in different Cloud

providers and federation of them, and in clusters and supercomputers. COMPSs runtime also

supports elasticity in clouds and federated clouds.

COMPSs applications can be exposed as web services, and internally these web services

are task-based applications able to run in parallel in distributed computing platforms. These

web services can then be combined with the Taverna Workbench into graphical workflows. This

approach results in a two-level workflow system: at the user level, workflows are built upon web

services, while those services turn out to be workflows as well at the infrastructure level. The

architecture of this solution is shown in fig. 4.

Figure 4. Two-level workflow system architecture for a astrophysics use case (taken from [45])

The cases considered compose a set of of analysis tasks of interest for some user applications

of the SKA community. The focus is on the kinematical modelling of galaxies, which is applied

in the study of galaxies evolution.

A common practice is to run the set of tasks with different parameters, in order to generate

several models. Therefore, several workflows are executed, and later there is a manual phase

from the astronomer to choose the optimal generated model. Given the large amount of data

that it is foreseen to be generated by SKA, the workflows have been designed to execute the

processing tasks where the data is stored.

The web services were deployed in a supercomputing cluster and in a distributed computing

infrastructure (IBERGRID). The COMPSs services were configured to receive either individual

sets of parameters to run a single combination of data or a list of sets of parameters in order to

run multiple time the same workflow. This is easy to be implemented in COMPSs, since offers a

programmatic interface, and it is also executed very fast in its runtime, while in other systems

like the same Taverna Workbech, either was difficult to specify since it is not that simple to

specify a loop in the graphical interface or it was not as efficient as expected.

Taverna Workbench Astronomy 2.5 was used to edit the graphical workflows, a special

edition of the Taverna Workbench that includes support for building and executing astronomy

workflows based on VO services through the Astrotaverna plug-in [44]. The workflows have been

published in the myExperiment repository and can be accessed by the community.

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 39

7. Intelligent Workflows

Previous sections have described current approaches to manage scientific workflows and

successful use cases deployed in distributed computing. With the Exascale era around the corner,

the community faces a unique opportunity of implementing a new generation of intelligent

workflows, which involve large simulations together with data analytics.

Figure 5. Architecture of new intelligent workflows

Such workflows (see fig. 5) will be composed of HPC simulations (a single task or node

in the workflow may be a large MPI+X simulation involving several computing nodes), data

analytics (which can be both at the input, interleaved with computation, or at the output) and

visualization. The actual workflow should not be static, but dynamically instantiated according

to the needs of the overall application objective. This will prevent brute force execution of large

simulations, otherwise enabling the dynamic deployment of new simulations or computations in

order to, for example, enact a finer simulation cycle since previous analytics cycle detect a given

anomaly in the previous results.

At a higher level, the system should provide an end-to-end coordination layer that enables

the management of dynamic workflows composed of simulations, analytics and visualization,

including inputs/outputs from streams. Since graphical interfaces usually lack of enough tools

to express dynamicity, a programmatic interface would be probably more appropriate. Program-

matic interfaces does not only support the description of iterative constructions like conditional

loops, but offer the whole expressiveness of the programming language to express complex al-

gorithms, like optimization searches, etc. For example, PyCOMPSs [53] or Swift [55] offer pro-

grammatic/scripting interfaces.

Additionally, taking into account that some application areas may require the possibility of

accepting streamed input data (from sensors or other sources of dynamic data) and streamed

output data (visualization, monitoring, etc) the system should support this type of data acqui-

sition.

This first coarser grain level of workflows will include a set of analytics, implemented as

fine grain workflows. These analytics can be provided as a layer of Analytics as a Service that

can be used by the workflows depending on their requirements. The analytics may implement

algorithms that can be parallelized as well, but usually this type of algorithms does not show

a parallelism easy to deal with traditional parallel programming models such as MPI, that is

why task-based programming models seem to be a better approach to implement such services.

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

40 Supercomputing Frontiers and Innovations

The services will be executed in a set of nodes of the same computing infrastructure, showing

an inherent parallelism described in the form of a finer grain workflow or task-graph.

Alternatives to implement these services can be traditional Big Data programming models,

such as Spark [58] or Hadoop [24], although these systems sometimes lack of the expected per-

formance in HPC systems [16], and environments that include runtimes with more performance

may be required for this purpose. Of special interest to implement these analytics can be the

use of GPUs or accelerators, that have proven to be key in the implementation of fast Neural

Networks used in Deep Learning [47].

The amount of data received, processed and generated with these workflows will require

new solutions for storage that go beyond the traditional file systems. New storage devices such

as Non-volatile RAM and storage class memories support data persistency and byte addressable

access, with a performance between memories and SSDs. These devices enable the availability of

data while being generated, without the need of writing the data to disk. A new type of consumer-

producer applications can be designed, where the data can be stored in these persistent storage

and be accessed during the execution of the producer application or after. While this data can

be stored in files or databases, both are designed to use block devices, while this type of storage

supports other alternatives, as direct object storage [36].

In the environment described before, persistent storage can be used to store the results of

simulations. The data can be consumed by the analytic services as soon as it has been produced

and the results of the analytic steps can also be stored in persistent storage, in order to be used

in visualization steps or in future queries. New challenges that appear are decisions on which

data should be stored in each level of the storage hierarchy, since probably the persistent layer

would have less capacity, or how to perform garbage collection in such memories (since data

is persistent after the execution of the applications), and its integration with the programming

models, since a clean interface should be provided to the programmers.

7.1. Summary and Systems Comparison

As a summary of the paper, this subsection discusses the main features of the Workflow

Management Systems (WFS) described in this paper in comparison with the new WFS archi-

tecture proposed in this section. This comparison is shown in Tab. 1.

Table 1. Workflow Management Systems features comparison

Feature / WMS Galaxy Kepler Autosubmit Taverna Pegasus (COMPSs Int. Workflows

Interface Graphical Graphical Script Graphical Textual Programmatic Programmatic
Parallel tasks Limited Yes Yes Limited Yes Yes Yes

Dynamic workflow No No No No Somehow Yes Yes
Hierarchy No Yes No Yes Somehow Somehow Yes

Support for streams No Yes No Yes No No Yes
Support for visualization Yes Yes No No No No Yes

Support for new stor. tech. No No No No No Yes Yes
Support for accelerators No No No No Somehow Yes Yes

As a general comment, we believe that WMS should be generic enough to cover the require-

ments of different scientific communities. It is reasonable that exists solutions home-made or

ad-hoc which are later adopted by more users and extended, but we consider that this should

not be the best practice.

A graphical interface is sometimes preferred by non expert programmers. However, draw-

ing large workflows that include conditional and loops can be a difficult task. Programmatical

interfaces offer the flexibility and expressiveness of the programming model: the behaviour of a

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 41

complex workflow can be described with a few lines of code. These interfaces can be supported

with graphical tools that visually show the obtained workflow. Also, this interface is able to

naturally support dynamic workflows.

The support for parallel tasks is, in most of the current systems, limited to multi-threaded

intranode tasks. Also, in some systems, although MPI tasks are supported, this support is

through its interaction with the batch system sending the whole task to the queuing system.

However, this is a key feature when considering workflows of HPC applications, with tasks that

are MPI applications executed across multiple nodes of a cluster.

The support for hierarchy is in a similar situation in the existing systems, sometimes sup-

ported through invocation of new instances of the engine, like in Pegasus or in the current

version of PyCOMPSs. This feature is very relevant in order to compose sub-workflows seman-

tically different into larger workflows. For example, a sub-workflow may compose a set of HPC

simulations, while another sub-workflow implement analytics of the results of these simulations.

Support for streaming and visualization are related features with limited support in current

systems (only Kepler supports both of them), but that are key for the support of end-to-end

workflows which involve inputs and outputs from multiple sources.

The support for new storage technologies and new architectures like accelerators have not

been considered so far by most of the current systems, but as technology evolve the WMS should

also consider them to improve performance and functionality.

Conclusions

While the scientific community has a unified view of what is a workflow, the different

instances of Workflow Management Systems available for researchers have large variety: options

for the interface, views on what can be a workflow tasks, types of data being exchanged by the

tasks, engine complexity, computing platform, etc.

This different nature is sometimes explained by the best practices of specific communities and

by the type of workflows each community requires. For example, for some communities, having

an intuitive graphical interface with the possibility of editing their workflows with a simple drag

and drop is essential, while for others, simplifying the access to large supercomputers where they

can run large parallel applications is a must.

However, within a given scientific community WMS with similar characteristics or inter-

operable between them are used. This is the case of Galaxy and Taverna, for example, largely

used in bioinformatics research, for which even exists a system, Tavaxy [2], that supports both

systems’ workflows.

While offering a single workflow management system for all scientific communities does not

seem possible, we believe that interoperability between similar systems should be promoted,

through common workflow description languages or interoperable interfaces. What is more, a

new family of workflow management systems that enable better integration between the compu-

tation and analytics of the workflows should be designed. These systems should enable a smarter

definition of the workflows, which will be more efficient in the usage of computing and storage

resources, and more effective on performing the required computations and analysis that are

required by the scientists. With regard the computing infrastructures, new architectures that

include new computing devices (GPUs, FPGAs and other accelerators), and new storage hier-

archies and technologies should be considered.

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

42 Supercomputing Frontiers and Innovations

Acknowledgments

This work has been supported by the Spanish Government (SEV2015-0493), by the Spanish

Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya

(contracts 2014-SGR-1051 and 2014-SGR-1272). This work is also supported by the Intel-BSC

Exascale Lab. The Human Brain Project receives funding from the EU’s Seventh Framework

Programme (FP7/2007-2013) under grant agreement no 604102.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Abbott, B., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., Amin, R., Ander-

son, S., Anderson, W., Arain, M., et al.: Ligo: the laser interferometer gravitational-wave

observatory. Reports on Progress in Physics 72(7), 076901 (2009), DOI: 10.1088/0034-

4885/72/7/076901

2. Abouelhoda, M., Issa, S.A., Ghanem, M.: Tavaxy: Integrating taverna and galaxy workflows

with cloud computing support. BMC bioinformatics 13(1), 77 (2012)

3. Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D., Čech, M., Chilton,

J., Clements, D., Coraor, N., Eberhard, C., et al.: The galaxy platform for accessible,

reproducible and collaborative biomedical analyses: 2016 update. Nucleic acids research p.

gkw343 (2016)

4. Afgan, E., Chapman, B., Taylor, J.: Cloudman as a platform for tool, data, and analysis

distribution. BMC Bioinformatics 13(1), 315 (2012), DOI: 10.1186/1471-2105-13-315

5. Afgan, E., Coraor, N., Chilton, J., Baker, D., Taylor, J., Team, T.G.: Enabling cloud burst-

ing for life sciences within galaxy. Concurrency and Computation: Practice and Experience

27(16), 4330–4343 (2015), cPE-15-0018.R1

6. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an exten-

sible system for design and execution of scientific workflows. In: Scientific and Statistical

Database Management, 2004. Proceedings. 16th International Conference on. pp. 423–424.

IEEE (2004)

7. Amstutz, P., Crusoe, M.R., Tijanić, N., Chapman, B., Chilton, J., Heuer, M., Kartashov,

A., Leehr, D., Mnager, H., Nedeljkovich, M., Scales, M., Soiland-Reyes, S., Stojanovic, L.:

Common Workflow Language, v1.0. Tech. rep. (3 2016), https://figshare.com/articles/

Common_Workflow_Language_draft_3/3115156, DOI: 10.6084/m9.figshare.3115156.v2

8. Barseghian, D., Altintas, I., Jones, M.B., Crawl, D., Potter, N., Gallagher, J., Cornillon, P.,

Schildhauer, M., Borer, E.T., Seabloom, E.W., Hosseini, P.R.: Workflows and extensions to

the kepler scientific workflow system to support environmental sensor data access and analy-

sis. Ecological Informatics 5(1), 42 – 50 (2010), http://www.sciencedirect.com/science/

article/pii/S1574954109000673, special Issue: Advances in environmental information

management

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 43

9. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb,

C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In: Studies in

Classification, Data Analysis, and Knowledge Organization (GfKL 2007). Springer (2007)

10. BioExcel website. Web page at http://www.bioexcel.eu, accessed: 2017-02-15

11. Cabellos, L., Campos, I., del Castillo, E.F., Owsiak, M., Palak, B., Pciennik, M.: Scientific

workflow orchestration interoperating htc and hpc resources. Computer Physics Commu-

nications 182(4), 890 – 897 (2011), http://www.sciencedirect.com/science/article/

pii/S0010465510005096

12. Coppens, F., Corpas, M.: Recommendation for actions on Galaxy for ELIXIR HoNs. avail-

able at https://www.elixir-europe.org/about/groups/galaxy-wg, accessed: 2017-02-

15

13. Coster, D.P., Basiuk, V., Pereverzev, G., Kalupin, D., Zagorksi, R., Stankiewicz, R., Huynh,

P., Imbeaux, F., et al.: The European Transport Solver. IEEE Transactions on Plasma

Science 38(9), 2085–2092 (2010)

14. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: An overview of

workflow system features and capabilities. Future Generation Computer Systems 25(5), 528 –

540 (2009), http://www.sciencedirect.com/science/article/pii/S0167739X08000861

15. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani, R.,

Chen, W., da Silva, R.F., Livny, M., et al.: Pegasus, a workflow management system for

science automation. Future Generation Computer Systems 46, 17–35 (2015)

16. Ekanayake, S., Kamburugamuve, S., Wickramasinghe, P., Fox, G.C.: Java thread and pro-

cess performance for parallel machine learning on multicore hpc clusters. In: Proceedings of

the 2016 IEEE International Conference on Big Data (2016)

17. Elixir website. Web page at https://www.elixir-europe.org, accessed: 2017-02-15

18. Building an European Reseach Community through Interoperable Workflows and Data. Web

page at http://www.erflow.eu, accessed: 2017-02-15

19. Erwin, D.W., Snelling, D.F.: Unicore: A grid computing environment. In: European Con-

ference on Parallel Processing. pp. 825–834. Springer (2001)

20. European Consortium for the Development of Fusion Energy. Web page at https://www.

euro-fusion.org, accessed: 2017-02-15

21. Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M.,

Truong, H.L., Villazon, A., Wieczorek, M.: Askalon: A grid application development and

computing environment. In: Proceedings of the 6th IEEE/ACM International Workshop on

Grid Computing. pp. 122–131. IEEE Computer Society (2005)

22. Falchetto, G.L., Coster, D., Coelho, R., Scott, B., Figini, L., Kalupin, D., Nardon, E.,

Nowak, S., Alves, L.L., Artaud, J.F., et al.: The european integrated tokamak modelling

(itm) effort: achievements and first physics results. Nuclear Fusion 54(4), 043018 (2014)

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

44 Supercomputing Frontiers and Innovations

23. Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman, D.,

Borkum, M., Bechhofer, S., Roos, M., Li, P., et al.: myexperiment: a repository and social

network for the sharing of bioinformatics workflows. Nucleic acids research 38(suppl 2),

W677–W682 (2010)

24. Apache Hadoop. Web page at http://hadoop.apache.org/ ((Date of last access: 15th

November, 2016))

25. Hospital, A., Montras, A., Soiland-Reyes, S., Bonvin, A., Melquiond, A., Gelṕı, J.L., Lezzi,

D., Newhouse, S., Dianes, J.A., Abraham, M., Apostolov, R., Ippoliti, E., Carter, A., White,

D.J.: D2.1 State of the art and gap analysis. Tech. rep., BioExcel deliverable (2016)

26. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn, T.: Taverna:

a tool for building and running workflows of services. Nucleic acids research 34(suppl 2),

W729–W732 (2006)

27. Imbeaux, F., Pinches, S., Lister, J., Buravand, Y., Casper, T., Duval, B., Guillerminet,

B., Hosokawa, M., Houlberg, W., Huynh, P., Kim, S., Manduchi, G., Owsiak, M., Palak,

B., Plociennik, M., Rouault, G., Sauter, O., Strand, P.: Design and first applications of

the iter integrated modelling & analysis suite. Nuclear Fusion 55(12), 123006 (2015), http:

//stacks.iop.org/0029-5515/55/i=12/a=123006

28. InfraStructure for the European Network for the Earth System Modelling. Web page at

https://is.enes.org, accessed: 2017-02-15

29. The Kepler Project. Web page at https://kepler-project.org, accessed: 2017-02-15

30. Kranzlmüller, D., de Lucas, J.M., Öster, P.: The european grid initiative (egi). In: Remote

Instrumentation and Virtual Laboratories, pp. 61–66. Springer (2010)

31. Laure, E., Edlund, A., Pacini, F., Buncic, P., Barroso, M., Di Meglio, A., Prelz, F., Frohner,

A., Mulmo, O., Krenek, A., et al.: Programming the grid with glite. Tech. rep. (2006)

32. Lordan, F., Tejedor, E., Ejarque, J., Rafanell, R., Alvarez, J., Marozzo, F., Lezzi, D.,

Sirvent, R., Talia, D., Badia, R.M.: ServiceSs: An Interoperable Programming Framework

for the Cloud. Journal of Grid Computing 12(1), 67–91 (2014)

33. Manubens-Gil, D., Vegas-Regidor, J., Matthews, D., Shin, M.: Assesment report on auto-

submit, cylc and ecflow. Tech. rep. (2016), https://earth.bsc.es/wiki/lib/exe/fetch.

php?media=tools:isenes2_d93_v1.0_mp.pdf

34. Manubens-Gil, D., Vegas-Regidor, J., Prodhomme, C., Mula-Valls, O., Doblas-Reyes, F.J.:

Seamless management of ensemble climate prediction experiments on hpc platforms. In:

High Performance Computing & Simulation (HPCS), 2016 International Conference on. pp.

895–900. IEEE (2016)

35. Manubens-Gila, D., Vegas-Regidora, J., Acostaa, M.C., Prodhommea, C., Mula-Vallsa, O.,

Serradell-Marondaa, K., Doblas-Reyes, F.J.: Autosubmit: a versatile tool for managing

Earth system models on HPC platforms. Future Generation Computer Systems submited

(2016)

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 45

36. Marti, J., Gasull, D., Queralt, A., Cortes, T.: Towards DaaS 2.0: Enriching data models. In:

Proceedings - 2013 IEEE 9th World Congress on Services, SERVICES 2013. pp. 349–355.

IEEE, IEEE (jun 2013), DOI: 10.1109/SERVICES.2013.59

37. McLennan, M., Clark, S., Deelman, E., Rynge, M., Vahi, K., McKenna, F., Kearney, D.,

Song, C.: Hubzero and pegasus: integrating scientific workflows into science gateways.

Concurrency and Computation: Practice and Experience (2014), DOI: 10.1002/cpe.3257

38. National Virtual Observatory. Web page at http://us-vo.org, accessed: 2017-02-15

39. Oliver, H.J.: Cylc (the cylc suite engine). Tech. rep. (2016)

40. Pordes, R., Petravick, D., Kramer, B., Olson, D., Livny, M., Roy, A., Avery, P., Blackburn,

K., Wenaus, T., Würthwein, F., et al.: The open science grid 78(1), 012057 (2007)

41. Price, B.: Frank and lillian gilbreth and the manufacture and marketing of motion study,

1908-1924. Business and economic history pp. 88–98 (1989)

42. Pronk, S., Larsson, P., Pouya, I., Bowman, G.R., Haque, I.S., Beauchamp, K., Hess, B.,

Pande, V.S., Kasson, P.M., Lindahl, E.: Copernicus: A new paradigm for parallel adaptive

molecular dynamics. In: Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis. pp. 60:1–60:10. SC ’11, ACM, New York,

NY, USA (2011), DOI: 10.1145/2063384.2063465

43. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II.

Ptolemy.org (2014), http://ptolemy.org/books/Systems

44. Ruiz, J., Garrido, J., Santander-Vela, J., Sánchez-Expósito, S., Verdes-Montenegro, L.: As-

trotavernabuilding workflows with virtual observatory services. Astronomy and Computing

7, 3–11 (2014)

45. Sánchez-Expósito, S., Mart́ın, P., Rúız, J.E., Verdes-Montenegro, L., Garrido, J., Sirvent,

R., Falcó, A.R., Badia, R., Lezzi, D.: Web services as building blocks for science gateways

in astrophysics. Journal of Grid Computing 14(4), 673–685 (2016)

46. Southern California Earthquake Center. Web page at http://scec.org/, accessed: 2017-

02-15

47. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks 61, 85

– 117 (2015), http://sciencedirect.com/science/article/pii/S0893608014002135

48. Scott, B.D., Weinberg, V., Hoenen, O., Karmakar, A., Fazendeiro, L.: Scalability of the

plasma physics code gem. arXiv preprint arXiv:1312.1187 (2013)

49. SHaring Interoperable Workflows for large-scale scientific simulations on Available DCIs.

Web page at http://www.shiwa-workflow.eu/, accessed: 2017-02-15

50. Square Kilometre Array. Web page at https://www.skatelescope.org, accessed: 2017-

02-15

51. Sloggett, C., Goonasekera, N., Afgan, E.: Bioblend: automating pipeline analyses within

galaxy and cloudman. Bioinformatics 29(13), 1685–1686 (2013)

Workflows for Science: a Challenge when Facing the Convergence of HPC and Big Data

46 Supercomputing Frontiers and Innovations

52. The Principles of Scientific Management. The Mathematics Teacher 4(1), 44–44 (1911),

http://www.jstor.org/stable/27949698

53. Tejedor, E., Becerra, Y., Alomar, G., Queralt, A., Badia, R.M., Torres, J., Cortes, T.,

Labarta, J.: Pycompss: Parallel computational workflows in python. International Journal

of High Performance Computing Applications (2015)

54. Galaxy Tool Sheed. Web page at https://toolshed.g2.bx.psu.edu, accessed: 2017-02-15

55. Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I.: Swift: A

language for distributed parallel scripting. Parallel Computing 37(9), 633–652 (2011)

56. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-

Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., et al.: The taverna workflow suite: designing

and executing workflows of web services on the desktop, web or in the cloud. Nucleic acids

research p. gkt328 (2013)

57. Yu, J., Buyya, R.: A taxonomy of workflow management systems for grid computing. Journal

of Grid Computing 3(3-4), 171–200 (2005)

58. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster Com-

puting with Working Sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics

in Cloud Computing. HotCloud’10, USENIX Association, Berkeley, CA, USA (2010)

R. M. Badia, E. Ayguade, J. Labarta

2017, Vol. 4, No. 1 47

