
Analysis of CPU Usage Data Properties and their possible

impact on Performance Monitoring

Konstantin S. Stefanov1, Alexey A. Gradskov1

c© The Authors 2016. This paper is published with open access at SuperFri.org

CPU usage data (CPU user, system, iowait etc. load levels) are often the basic data used

for performance monitoring. The source of these data is the operating system. In this paper we

analyze some properties of CPU usage data provided by the Linux kernel. We examine the kernel

source code and provide test results to find which level of accuracy and precision one may expect

when using CPU load level data.

Keywords: performance monitoring, sensor properties, sampling rate, CPU usage, CPU load

level.

Introduction

Today supercomputers show very impressive performance for their peak values and with

some benchmarks like LINPACK [1]. Other benchmarks like HPCG [2] as well as real-world

applications produce much worse results, often not reaching even 10% of peak performance.

Performance monitoring is one of the methods used to evaluate applications while they

are running and determine the obstacles to higher sustained performance of applications. The

idea of performance monitoring is to collect metrics which describe the state of the application

being run. These data are collected for all compute nodes running the given application. Some

performance monitoring approaches [3] try to analyze metrics obtained from components which

are shared for the whole system and correlate those data to specific applications.

The source of metrics data, which we call sensors, may be hardware like performance coun-

ters in modern CPU, or software, like various data provided by the operating system such as

CPU usage data, load average, memory usage etc. Some sensors may be somewhere on the bor-

der between software and hardware like InfiniBand interface counters, which are maintained by

InfiniBand card firmware.

There are questions about the properties of such sensors and their suitability for performance

monitoring in different modes. Of course all those sensors are widely used for a long time for

performance monitoring and give useful data which lead to useful results in application analysis.

But as performance monitoring systems evolve we may encounter some limitations of such sensors

which may lead to their unsuitability for new approaches or new modes of usage. For example

SuperMon [4] can achieve up to 6000 Hz sampling rate while reading Linux kernel data from

/proc [5] filesystem. But do we need such sampling rate and are the results obtained at such a

high rate reliable? Will such high rate affect the precision of the data?

This question is not widely discussed for every type of data used for performance monitoring.

When performance counters were introduced in processors, hardware performance counters were

analyzed [6–9] from the point of accuracy, predictability, reproducibility and so on. Paper [10]

compares two modes of using performance counters and compares the results obtained in these

modes. A discussion about Load Average data in Linux kernel aroused on mailing lists [11]. This

discussion resulted in some patches on kernel source code to make Load Average results more

accurate, but it is not clear if today kernel load average data are accurate enough, and we found

no such analysis for sensors other than performance counters and load average.

1M.V. Lomonosov Moscow State University, Moscow, Russia

DOI: 10.14529/jsfi160405

66 Supercomputing Frontiers and Innovations



CPU usage data are obtained from Linux kernel and are widely used for performance mon-

itoring. In this paper we try to analyze Linux kernel source code and make some testing to

evaluate CPU usage data properties which are vital for analyzing application behavior.

The paper is organized as follows. Section 1 describes how the CPU usage data in their

conventional form are obtained from the kernel. Section 2 gives results of analysis of Linux

kernel source code in parts which relate to CPU usage data. Section 3 provides results of testing

supporting the results which were given in Section 2. The last section contains the conclusion.

1. How CPU usage data are obtained

The Linux kernel gives CPU usage data in /proc/stat file. For every active CPU in the

system the kernel gives the amount of time, measured in 1/100 ths of a second, that the sys-

tem spent in different modes of execution [5] since boot. These different modes are: user mode

(running user processes), user mode with low priority (nice), system mode (running kernel),

idle, iowait (idle while waiting for IO request to complete), irq (processing interrupts), softirq

(processing software interrupts) and a few other modes related to virtualization. To obtain CPU

usage in the form we are accustomed to with top or other utilities (we call it CPU load level

hereafter), one should take the difference in one mode values between two successive measure-

ments and divide it by the sum of such differences for all modes. If T i
m is the time spent in m-th

mode at time moment i (these values are given in /proc/stat), than the CPU load level Lm

for the mode m is

Lm =
T i
m − T i−1

m∑
m

(T i
m − T i−1

m )

One can also try to get CPU load level by dividing T i
m−T i−1

m by the time difference between

i and i−1 time moments, but as obtaining precise time is quite an expensive operation involving

system call, this method is usually not used.

One consequence of this calculation method is that CPU usage values are discrete in nature.

The number of different values they can take depends on sampling interval. The more time

passes between successive samples, the more levels CPU usage value can take. top utility gives

us CPU usage percent with precision of 1 decimal place (1000 possible different values in range

from 0 to 100%). The data supplied by the kernel which are used for calculations are measured

in 1/100 ths of a second; to have real precision of 1/10 th of percent for CPU load level value

we should take the measurements more rarely than once in 10 seconds. With more frequent

sampling the precision of CPU load level will be less than 1 decimal place.

2. Source code analysis

We examined the Linux kernel source code to find how these values (time spent in different

modes) are calculated.

These per-CPU values (and per-process values for time spent in user and system mode, too)

are updated during timer interrupt processing. Timer interrupt frequency is a parameter set

during kernel compilation (it is named HZ). The most common values for this parameter are 1000

and 250 (timer interrupt is raised 1000 or 250 times per second, respectively). When executing the

timer interrupt handler (generally it is executed on every CPU with some exceptions described

later), the kernel finds the mode in which the given CPU was before switching to interrupt

K. S. Stefanov, A. A. Gradskov

2016, Vol. 3, No. 4 67



handler and which process was running. The whole tick is accounted to the mode and to the

process which was active before the CPU received timer interrupt. The modes which were active

in period between timer interrupts are not accounted in any way.

Internally, CPU usage times are calculated in kernel as numbers of 1/HZ second time inter-

vals. When the results are returned to the user, they are scaled to 1/100 ths of a second. Such

rescaling may introduce some rounding errors but they are not expected to be high.

When NO_HZ [12] kernel compilation parameter is active (true by default for modern SMP

kernels), timer interrupts are not delivered to idle CPUs. When CPU usage values are requested,

idle and iowait times are calculated at the moment of the request by finding the time since the

given CPU became idle. When the CPU comes out of idle state, the values for idle and iowait

are calculated and saved to accounting data structures.

The outcome of this calculation method is that the CPU usage times for user, system, and

nice modes are updated only on timer interrupts and that some frequent changes from running

to idle or between other modes may pass unnoticed by the accounting code.

3. Experiments

3.1. Measuring interval between CPU usage data changes

Our first experiment was designed to prove that CPU usage times for user, system, and

nice modes are updated only on some periodic events. To check this we performed a test which

was constantly requesting CPU usage time and calculated time which passed between successive

CPU usage changes. The results are presented in fig. 1. Time interval in milliseconds between

0

500

1000

1500

2000

2500

3000

3500

4000

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0
.0

1
0
.5

1
1
.0

1
1
.5

1
2
.0

1
2
.5

1
3
.0

1
3
.5

1
4
.0

1
4
.5

1
5
.0

1
5
.5

1
6
.0

1
6
.5

1
7
.0

1
7
.5

1
8
.0

1
8
.5

1
9
.0

1
9
.5

interval, msec

Figure 1. Distribution of time between CPU usage values increments for user, system, and nice

modes

CPU usage increments is on X-axis, and number of increments that occurred at these intervals

is shown on Y-axis. We see that most of CPU usage values updates happen at intervals that are

Analysis of CPU Usage Data Properties and their possible impact on Performance...

68 Supercomputing Frontiers and Innovations



multiples of 1 millisecond, which is 1/HZ second (HZ=1000 for OS installed on our test machine).

The peak at 10.0 milliseconds (1/100 th of a second) is caused by the fact that the data exported

to user is rescaled to units of 1/100 ths of a second.

The load for the test was produced by two threads both bound to the same CPU. One thread

was mostly iterating in an empty loop and sometimes performed nanosleep [13] system call with

incorrect input parameters, thus creating a bit of system mode load. nanosleep system call

delays the calling process for a time measured in nanoseconds, but in fact nanosleep resolution

is rougher than nanosecond. Argument to nanosleep is a structure with separate members for

seconds and nanoseconds to sleep, so when the nanoseconds member is set to a value higher than

109, the value is incorrect and the call returns immediately, quickly switching to system mode

and back. The second thread was mostly performing nanosleep call with incorrect parameter

thus creating mostly system mode load and sometimes making some iterations in an empty loop.

This mix of user mode and system mode load on single CPU made system update values for

user, and system modes happen frequently.

When we changed the test to look for intervals between increments of CPU usage data

for all modes (thus including idle, iowait, irq, softirq and virtualization-related modes into

consideration), the results changed, see fig. 2. CPU usage data increments happen mostly at

intervals that are multiples of 0.2 millisecond, which definitely can’t happen only on timer

interrupts as they are known to happen at intervals of 1 millisecond.

0

500

1000

1500

2000

2500

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

8
.5

9
.0

9
.5

1
0
.0

1
0
.5

1
1
.0

1
1
.5

1
2
.0

1
2
.5

1
3
.0

1
3
.5

1
4
.0

1
4
.5

1
5
.0

1
5
.5

1
6
.0

1
6
.5

1
7
.0

1
7
.5

1
8
.0

1
8
.5

1
9
.0

1
9
.5

interval, msec

Figure 2. Distribution of time between CPU usage values increments for all modes

The load for this test was produced by a thread with mixed user mode load and idle state.

The thread performed an empty loop (for user mode load) and made nanosleep call to introduce

some idle time for the CPU to allow idle CPU usage values to be incremented.

We can’t explain why the intervals between CPU usage value increments are the multiples

of 0.2 milliseconds. We propose that this value is somehow connected with hardware timer

resolution, but this requires further research.

K. S. Stefanov, A. A. Gradskov

2016, Vol. 3, No. 4 69



3.2. Estimating the accuracy of CPU usage data

Our second experiment tries to estimate the error introduced by the fact that CPU state (for

user and system mode) is examined only when timer interrupt occurs and no changes between

interrupts are accounted for. The test pseudocode is shown in fig. 3

for (int j = 0; j < 10000000; ++j)

nanosleep(&delay, NULL);

Figure 3. Test pseudocode

The test is just a nanosleep call in a loop. We use different values for the delay. To have

zero-length delay we use an incorrect value so nanosleep returns immediately. Thus we can

measure the time needed for performing all the work except sleep itself. The results are shown

in fig. 4 and fig. 5, and the data with some uninteresting points omitted are given in tab. 1.

Run time for different delays is shown in fig. 4. The ‘Real’ line is the total run time for

the test measured with the time [14] Linux utility. The ‘Estimated’ line is the requested delay

length multiplied by the number of iterations. Both lines are parallel for delays greater than

200 microseconds, so we may assume that the real delay introduced by nanosleep is quite

accurate for such delays. For delays less than 200 microseconds the real delay seems to be less

accurate, but still it is approximately equal to the requested delay.

0

2 000

4 000

6 000

8 000

10 000

12 000

0 100 200 300 400 500 600 700 800 900 1 000

Ti
m

e,
 s

ec

Delay, μsec

Real

Estimated

Figure 4. Real and estimated runtime for the delay test

But the values measured for the times the test program spent in user and system mode

during execution are not so accurate (see fig. 5). We expected beforehand that the values for

user and system time will be the same as in a no-delay run (0.29 and 0.32 seconds, respectively),

as user mode and system mode work done by the processor seem to be independent of the delay

Analysis of CPU Usage Data Properties and their possible impact on Performance...

70 Supercomputing Frontiers and Innovations



value. But the results are not so trivial. For the delays greater than 200 microseconds user time

is approximately constant, but for the lesser delays the values are a bit chaotic. For system time

the results are even more strange. System time is approximately constant for the delays in range

from 200 to 700 microseconds, but has unpredictable values outside that range.

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1 000

Ti
m

e,
 s

ec

Delay, μsec

User

System

Figure 5. User and system mode times for the delay test

The only explanation we see is that some of the delays are somehow synchronized with timer

interrupts, and as check for the CPU mode is done on timer interrupts, the results for user and

system time depend on the fraction of delays which overlap with timer interrupts.

For example, if we compare a no delay run and a run with 90-microseconds delay, the

same loop with the same system call is accounted 30 times more for user time when inserting

a real sleep, more than 7 times for system time. For this example we chose a delay value to

have the overaccounting effect high. But how high is the probability that such synchronization

occurs in real world applications? Of course this question demands further research, but at

least scheduling events are done in timer interrupt handler, and it is known that in networks

seemingly unconnected independent events tend to synchronize [15]. As HPC applications use

network for communication, we may expect similar effect as well.

Conclusion and Future Work

We analyzed CPU usage data provided by the Linux kernel and how CPU load level is

calculated based on these data. The result is that to have the precision of CPU load level

percentage of 1 decimal place (when CPU load level is measured in percent of full load) one

should sample CPU usage data no more frequently than once every 10 seconds. CPU usage data

are not continuously updated, they are updated on timer interrupt which occurs HZ (common

values are 250 or 1000) times per second. When calculating accounting data for user, system,

K. S. Stefanov, A. A. Gradskov

2016, Vol. 3, No. 4 71



Table 1. The results of the delay test

Delay, µsec Run time, sec User time, sec System time, sec

0 0.62 0.29 0.32

1 541.05 2.99 17.98

5 586.24 1.55 18.69

10 631.19 0.77 21.13

20 730.32 2.31 18.51

30 831.06 2.96 17.46

40 927.86 2.15 10.88

50 1036.01 2.23 10.8

60 1128.32 1.8 10.81

70 1454.09 6.07 29.1

80 1681.41 7.16 35.08

90 1690.68 6.15 29.82

100 1789.82 6.13 29.62

150 2446.33 8.05 38.35

200 3211.62 10.24 48.81

700 8246.95 10.17 50.38

750 8741.05 10.69 57.66

1000 11329.95 11.16 61.4

and nice modes, only the state of the system at the moment of the interrupt is examined, no

changes in between the interrupts are accounted. Our experiments show that the same amount

of work may be measured very differently when delays are introduced between work periods.

Our future task is to run more elaborate tests and find real application examples when delays

between periods of work (calculations) affect the accuracy of CPU load level measurements. We

think that it will be especially interesting if the delays are done by waiting for communications

which is quite a common case for HPC applications.

The reported study was supported by the RFBR research project No. 16-07-01121.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Dongarra JJ, Moler CB, Bunch JR, Stewart GW. LINPACK User’s guide. Society for

Industrial and Applied Mathematics; 1979. Available from: http://epubs.siam.org/doi/

book/10.1137/1.9781611971811.

2. Dongarra J, Heroux MA, Luszczek P. HPCG Benchmark: a New Metric for Rank-

ing High Performance Computing Systems. Knoxville, Tennessee: lectrical Engineer-

ing and Computer Sciente Department, Knoxville, Tennessee; 2015. Available from:

http://www.eecs.utk.edu/resources/library/file/1047/ut-eecs-15-736.pdf.

Analysis of CPU Usage Data Properties and their possible impact on Performance...

72 Supercomputing Frontiers and Innovations



3. Kluge M, Hartung M. Mapping of RAID Controller Performance Data to the Job History

on Large Computing Systems. In: 2014 International Workshop on Data Intensive Scalable

Computing Systems. New Orleans, Louisiana, USA; 2014. p. 73–80. Available from: http:

//conferences.computer.org/discs/2014/papers/7038a073.pdf.

4. Sottile MJ, Minnich RG. Supermon: a high-speed cluster monitoring system. In: Proceed-

ings. IEEE International Conference on Cluster Computing. IEEE Comput. Soc; 2002. p.

39–46. Available from: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=

1137727.

5. proc(5) - process information pseudo-file system;. Available from: http://linux.die.net/

man/5/proc.

6. Korn W, Teller PJ, Castillo G. Just how accurate are performance counters? In: Con-

ference Proceedings of the 2001 IEEE International Performance, Computing, and Com-

munications Conference (Cat. No.01CH37210). IEEE; 2001. p. 303–310. Available from:

http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=918667.

7. Weaver VM, McKee SA. Can hardware performance counters be trusted? In: 2008 IEEE

International Symposium on Workload Characterization, IISWC’08. vol. 08; 2008. p. 141–

150.

8. Weaver V, Dongarra J. Can hardware performance counters produce expected, deterministic

results. Proceedings of Third Workshop on Functionality of Hardware Performance Moni-

toring. 2010;Available from: http://icl.cs.utk.edu/news_pub/submissions/fhpm2010_

weaver.pdf.

9. Weaver VM, Terpstra D, Moore S. Nondeterminism and Overcount in Hardware Counter

Implementations. In: 2013 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS). Austin, TX: IEEE; 2013. p. 215–224. Available from:

http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6557172.

10. Moore SV. A Comparison of Counting and Sampling Modes of Using Performance Moni-

toring Hardware. In: Computational Science ICCS 2002. Springer Berlin Heidelberg; 2002.

p. 904–912. Available from: http://link.springer.com/10.1007/3-540-46080-2_95.

11. Smythies D. Linux reported load averages, for example from top and uptime commands,

can be incorrect; 2012. Available from: http://www.smythies.com/~doug/network/load_

average/.

12. NO HZ: Reducing Scheduling-Clock Ticks;. Available from: https://www.kernel.org/

doc/Documentation/timers/NO_HZ.txt.

13. nanosleep(2): high-resolution sleep;. Available from: https://linux.die.net/man/2/

nanosleep.

14. time(1) - time a simple command or give resource usage;. Available from: https://linux.

die.net/man/1/time.

15. Floyd S, Jacobson V. The synchronization of periodic routing messages. IEEE/ACM Trans-

actions on Networking. 1994 apr;2(2):122–136. Available from: http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=298431.

K. S. Stefanov, A. A. Gradskov

2016, Vol. 3, No. 4 73


