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Simulations running at high concurrency on HPC systems generate large volumes of data

that are impractical to write to disk due to time and storage constraints. Applications often adapt

by saving data infrequently, resulting in datasets with poor temporal resolution. This can make

datasets difficult to interpret during post hoc visualization and analysis, or worse, it can lead to lost

science. In Situ visualization and analysis can enable efficient production of small data products

such as rendered images or surface extracts that consist of polygonal geometry plus fields. These

data products are far smaller than their source data and can be processed much more economically

in a traditional post hoc workflow using far fewer computational resources. We used the SENSEI

and Libsim in situ infrastructures to implement rendering workflow and surface data extraction

workflows in the AVF-LESLIE combustion code. These workflows were then demonstrated at high

levels of concurrency and showed significant data reductions and limited impact on the simulation

runtime.

Keywords: In Situ, High Performance Computing, Visualization, Extract Database, SENSEI,

Libsim, Workflow.

Introduction

Today’s large scale simulations run on HPC systems and generate far more data than can be

practically saved or analyzed. HPC system design emphasises fast computations and I/O to and

from these systems is often a secondary concern, leading to an asymmetry in which computed

data often cannot be written to disk without resorting to strategies that sacrifice the temporal

resolution of the data (saving infrequently). Recent developments explore the use of node local

storage such as burst buffers that give applications a fast, convenient buffer to store results while

they are staged out to the main I/O system. However, such hardware is not yet commonplace

and other strategies such as in situ computations are emerging in production software as a

mechanism to manage the data problem by reducing data that must be stored. Without in situ,

the traditional post hoc workflow requires large simulation data to make costly trips to and

from the I/O system, slowing both the simulation and later the visualization and analysis codes

invoked to process the data. In Situ works by integrating analysis and visualization with the

simulation so these operations may take place while the data are still in main memory, and are

thus far less expensive to access. The data products produced in situ, whether they are statistics,

rendered images, or even surface geometry extracts, are often orders of magnitude smaller than

the memory-resident data and can be saved out far more economically.

In situ visualization is usually inexpensive enough to be applied frequently, actually improv-

ing access to spatio-temporal data that is often not saved or is undersampled due to time and

storage constraints. Sometimes in situ does have limitations if the data products saved during

the simulation run lack enough information for analysis. For instance, in situ is often ideal for

creating statistics and rendered images but those data products may be less useful for actual

exploration of data unless many images are saved. To permit better exploration of data after the

fact, in situ can be extremely useful in the generation of extract databases. An extract database

consists of extracted polygonal geometry plus scalar and vector field data. Extract databases

can drastically reduce the amount of data being saved while still providing enough information
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to perform useful post hoc visualization and data analysis. The use of extract databases enables

flexibility since most of the costly data reductions occur in situ and the reduced datasets can be

visualized on more modest compute resources. By storing the geometry and fields in an extract

database, it is still possible to create derived fields, render the geometry from various viewpoints,

perform surface integrations, and many other operations that would not be possible on strictly

image-based data products. The potential for massive data reduction, massive time eliminated

when extracting dataset features, and the ability to later visualize features of interest, as opposed

to static rendered images, are what make extract databases compelling.

In this study, we implement a workflow that uses in situ to perform both rendering and

extract database generation to highlight “interesting” features in a turbulence simulation and

save them out for later analysis in a visualization tool. The combination of in situ to avoid the

time and storage costs of massive I/O and the ability to perform further analysis or rendering

on the generated data produces a powerful, streamlined workflow.

1. Background

AVF-LESLIE [11, 12] is a reactive flow solver used for Direct Numerical Simulation or

Large Eddy Simulation (DNS/LES) investigation of canonical reactive flows. It solves the re-

active multi-species compressible Navier-Stokes equations using a finite volume discretization

upon a Cartesian grid. We used AVF-LESLIE to simulate an unsteady, turbulent mixing layer

(TML) between two fluids. The simulation demonstrates the evolution of turbulent, braided flow

structures (our features of interest) that form as the system breaks down into homogeneous tur-

bulence. AVF-LESLIE can output results to PLOT3D or HDF5/Xdmf format for later analysis

and visualization.

The quick evolution of turbulent structures requires access to many simulation time steps

to produce a faithful visualization. For the TML case, each time step produced many gigabytes

of data. This made it impractical to save enough time steps to produce a times series suitable

for purposes such as animation. The sheer size of the saved volume datasets would quickly

overwhelm available disk space and make post-processing the results require as much compute

resources as the original solver to fit the solution in memory and read it back from disk in a

reasonable time.

Previous integration of VisIt’s Libsim library [6, 13] into solvers such as CREATE-AVTM

Kestrel to enable in situ generation of surface extracts yielded good results [14]. When run on

1024 cores and saving isosurfaces of structured and unstructured grid data for helicopter geome-

tries, the coupled Kestrel/Libsim was able to frequently output extracts while using no more

then 2-3% of the solver runtime. As the simulation produced extracts, a separate visualization

job processed them into images, resulting in an efficient automated workflow.

The same in situ workflow would be applicable to combat the challenges of isolating features

of interest from AVF-LESLIE’s TML flow field. Polygonal surface geometry and the fields defined

on those surfaces of interest are extracted and exported to FieldView eXtract DataBase (XDB)

files for later post hoc analysis and rendering using Intelligent Light’s parallel FieldView [2]

software. XDB files are designed to save line and mesh geometries and the associated scalar and

vector fields defined on those geometries. XDB files preserve numerical precision of the stored

data making it possible to perform accurate analysis such as surface integration using the extract

data in lieue of the original volume data. The resulting workflow decouples feature extraction
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from rendering. This enables scheduling flexibility and it lets each phase of the workflow use

different amounts of compute resources.

The separation of feature extraction and actual visualization into distinct phases that run

asynchronously is a feature that is shared by certain in transit infrastructures. In Transit in-

frastructures such as ADIOS [8] provide an I/O interface to the simulation, which then “writes”

its data to other compute resources and then continues. This has the advantage of not stalling

the simulation while extracting data or rendering. However, this approach requires additional

compute resources to receive the simulation data and further process it, which might be a down-

side when operating at the limits of the compute resource. A more problematic downside of I/O

based systems is that they can be too low-level. I/O interfaces such as ADIOS provide functions

for writing arrays. Complicated data structures such as meshes often consist of multiple arrays

to represent coordinates and connectivity. Such data structures are encoded into multiple data

arrays using various conversions. By necessity, analysis routines that run on the other side of

the in transit pipeline must support conventions to reassemble array data back into useful mesh

structures. Paraview Catalyst [1, 5] is a powerful in situ infrastructure that also supports in

transit. Data are exposed to Catalyst as VTK [10] datasets via user-provided adaptor code that

is developed for each simulation. The adaptor code defines how simulation data are translated

into VTK datasets and permits simulation data arrays to be wrapped as VTK data arrays,

allowing zero-copy data passing. Once the data are represented as VTK datasets, they can be

operated on by user-defined rendering and data analysis pipelines or they may be shipped to

other compute resources for in transit visualization and data analysis. Though it does not have

its own in transit mode, VisIt’s Libsim otherwise provides similar functionality to Catalyst and

provides rendering, data analysis, and extract functionality. VisIt’s large set of plots and oper-

ators enable the creation of complicated visualization pipelines that can be used for rendering

and data extraction. In addition, VisIt provides an export plug-in to the FieldView XDB file

format, which enables analysis and rendering of extract data using FieldView.

These infrastructures can all form the building blocks of higher-level infrastructures. For ex-

ample, Cinema [3] assembles images that are produced in situ into databases that can be interac-

tively explored in a lightweight viewer. The images are produced by a simulation instrumented

with Catalyst, or another suitable in situ infrastructure. SENSEI [4] is another higher-level

infrastructure. SENSEI provides a unified interface to multiple in situ infrastructures, includ-

ing ADIOS, Catalyst, and Libsim. SENSEI simplifies the process of in situ instrumentation by

providing data abstractions that enable creation of a write-once simulation adaptor to expose

simulation data structures to SENSEI using the VTK data model. Once inside SENSEI, the

VTK data can be passed to any of the coupled in situ infrastructures, even combining multiple

infrastructures in a single analysis. For the purposes of this analysis, we coupled AVF-LESLIE

through SENSEI to enable future flexibility in connecting to infrastructures such as Catalyst or

ADIOS. Once instrumented using SENSEI, we selected the Libsim analysis back end to permit

the creation of FieldView XDB files. XDB files were read and processed as they were created by

separate FieldView jobs running on a workstation.

2. Instrumentation

Producing a working instrumented version of AVF-LESLIE capable of running on a large

scale HPC system required changes to several software packages.
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2.1. VisIt / Libsim

VisIt is a visualization and analysis software package that was started at Lawrence Livermore

National Laboratory in the year 2000. From the start VisIt was designed to work efficiently on

large distributed-memory HPC systems. As such, VisIt’s compute server runs in parallel using

MPI message passing to coordinate multiple processes that each operate on a subset of the

overall dataset. VisIt’s compute server is architected such that it can be loaded dynamically

from simulations via the Libsim library, a VisIt library that is added to simulations to enable

them to perform VisIt-enabled in situ rendering and analysis. VisIt is normally built using

shared libraries which are dynamically loaded when Libsim detects that in situ operations are

requested. This approach works well up to a few thousand cores after which the file system may

introduce delays while loading VisIt’s shared libraries and plugins.

The ultimate target concurrency for this study would be in the range of tens of thousands

to hundreds of thousands of cores so long delays incurred loading shared libraries would not

be acceptable. To avoid such delays, we modified to VisIt’s CMake-based static build process

to create a statically-built version of Libsim. The static Libsim includes all VisIt libraries and

plugins in a single library that simplifies addition of VisIt functionality into simulations such as

AVF-LESLIE.

2.2. XDB Library

VisIt’s FieldView XDB export capability uses an export plugin that passes VisIt’s inter-

nal VTK datasets to the XDB library for writing FieldView XDB files for later consumption

by FieldView. The XDB library enables the client program to create extract entities such as

streamline rakes or polygonal surfaces, record relevant metadata, and define scalar and vector

fields on those geometries. The format preserves the precision of the data when saved so it can be

used for analyses that would have been appropriate for the original volume data. The metadata

saved by the XDB format provides clues to Fieldview about how the surfaces were generated

during the data extraction process. For instance, an isosurface extract will record the variable

and isocontour value used to generate the surface.

Prior enhancements to the XDB export plugin in VisIt enabled support for write groups

(described in [7]), which let VisIt perform partial data aggregation during production of XDB

files. However, improved support for parallel writes was desired and the XDB library was not

designed for parallel. Consequently, we undertook a redesign of the library that would decouple

the data model that describes the XDB surface extracts from the methods used to write and

read the data. This effort yielded a second version of the XDB library, which could read/write

the XDB format while providing a future path to using parallel data transports such as ADIOS.

The resulting XDB library also can represent its data objects using zero-copy constructs that

support various memory layouts, a feature necessary to reduce overhead when running in situ.

The VisIt XDB export plugin was enhanced to use the new version of the XDB library and this

was the version used during instrumentation of AVF-LESLIE.

2.3. Integration with AVF-LESLIE

SENSEI enables simulations to integrate with multiple in situ infrastructures while creating

just one code adaptor. An adaptor exposes simulation data structures so their data may be

used by the in situ infrastructure. We modified previous adaptor code that had been created to
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integrate directly with Libsim so AVF-LESLIE could also integrate SENSEI, opening the door

to future workflows where ADIOS is used for in transit data staging to a separate “endpoint”

analysis program running on an alternate set of compute nodes. At this time, we have not yet

attempted using that feature but have verified that our XDB workflow continues to operate

using the SENSEI infrastructure.

The SENSEI adaptor follows a pattern that requires just a few insertions of extra adaptor

functions into AVF-LESLIE’s main routine: an initialize function, a coprocess function, and a

finalize function. The initialize function is used to set up SENSEI, which in turn performs the

relevant initialization for its subservient in situ analysis infrastructures. The coprocess function

passes pointers to AVF-LESLIE arrays to some book-keeping code that associates the buffer

addresses and sizes with variable names. The coprocess function’s role is to package the simu-

lation’s buffers (zero-copy when possible) as a VTK curvilinear grid dataset with various fields

defined on its nodes. For the purposes of this study, the adaptor also calculates the vorticity

field, which is not computed in the solver, yet is needed to identify vortex features of interest for

in situ rendering and data extraction. After packaging the simulation data as a VTK dataset,

the VTK dataset is passed through SENSEI to a secondary analysis adaptor that shares the

dataset with an analysis infrastructure, in this case Libsim. The analysis adaptor created for

Libsim accepts the VTK dataset from the SENSEI analysis adaptor and exposes that data to

VisIt via Libsim function calls and adaptor callback functions. In addition, the adaptor creates

a set of VisIt plots based upon commands from an extract input file and uses those plots to

export the desired extract surfaces into XDB files. Plots can also be restored from a VisIt session

file which is an XML file that is useful for creating visualizations that can be rendered since

plot attributes and colors are preserved. The finalize function is called when AVF-LESLIE has

completed its main loop and needs to clean up prior to exiting. The overall schematic for the

instrumented simulation is shown in fig. 1.

3. Performance

In this study, AVF-LESLIE was configured to simulate unsteady dynamics of a temporally

evolving planar mixing layer at the interface between two fluids, a configuration that gives

rise to a temporal mixing layer (TML). This type of fundamental flow mimics the dynamics

encountered when two fluid layers slide past one another and is found in atmospheric and ocean

fluid dynamics as well as combustion and chemical processing. The two sliding fluid layers are

subject to inviscid instabilities and can evolve from largely 2D laminar flow into fully developed,

3D homogeneous turbulent flow as shown in [9]. Visualizations of the TML flowfield in fig. 2

show isosurfaces of the vorticity field, at 10,000, 50,000, 100,000, and 200,000 time steps where

the flow evolves from the initial flow field, vortex braids begin to form, wrap and then the flow

breaks down leading to homogeneous turbulence, respectively.

We conducted scaling studies using AVF-LESLIE on Titan at Oak Ridge Leadership Class

Compute Facility. Titan is a Cray XK7 with 18,688 compute nodes, each containing a 16-core

AMD Opteron CPU, 32GB of memory, and an Nvidia Tesla K20X GPU. The scaling studies

used a Cartesian grid size of 10253 and physical non-dimensional domain size of 4π x 4π x 2π.

The size of the 10253 grid was held constant during scaling, resulting in a strong scaling study

that reduces the average simulation workload per core as the number of cores increases. Two

types of in situ computations were performed: a rendering workflow, and an extract-based XDB

workflow.

B. J. Whitlock, E. P. N. Duque

2016, Vol. 3, No. 4 23



Main 
loop

Extract
Input 
File

Initialize

Coprocess

Finalize

Libsim
Adaptor
Callbacks

VisIt
Runtime
Library

XDB Export

Libsim

AVF-LESLIE SENSEI Adaptor Library

VisIt
Session 

File

Render

XDB

images

Data Arrays
Plots / Operators

Pointers 
to data

XDB
W

orkflowRe
nd

er
 

W
or

kf
lo

w

SENSEI Libsim 
Analysis 
Adaptor

Figure 1. AVF-LESLIE simulation instrumented with SENSEI, VisIt/Libsim, and XDB library

3.1. Rendering Workflow

The rendering workflow was scaled up to 131,072 cores on Titan using all 16 cores in a

compute node. The workflow demonstrated that the instrumented simulation can create and

render a visualization based on the data directly from the solver memory as in [4]. In this

case, the simulation was initialized using a VisIt session file, which directed Libsim to create 3

isosurfaces of the derived vorticity field and 3 planar slices. The visualization was rendered into a

1600x1600 pixel image image and saved to PNG format. Each measurement in the scaling study

was performed using 100 time steps of AVF-LESLIE where in situ rendering was performed

every 5th solver time step. Timing measurements were obtained from log files produced by the

instrumented solver, which called the MPI Wtime() library function around blocks of code being

timed.

The timings measured time spent in the solver time step and overall time performing in

situ rendering, which includes data extraction, rendering, image compositing, and image saving.

The time spent in the solver decreased as the number of cores was increased due to the strong

scaling induced by holding the grid size constant. It is worth noting that the complexity of the

visualization resulted in long rendering times. The total time spent rendering is amortized over

5 solver time steps, resulting in an image saving cost on the order of 1-2 seconds when compared

against the average solver time step. Also, the time spent on in situ increased with scale, largely

due to image compositing.

Image compositing is an operation whereby full scale images from each MPI rank are com-

bined in a tree-based reduction among all MPI ranks ultimately resulting in one MPI rank

having a single image containing contributions from all of the input images on other MPI ranks.
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Figure 2. The Evolution of Temporal Mixing Layer from Initial to Vortex Breakdown
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Figure 3. Strong Scaling Performance of AVF-LESLIE and In Situ Rendering Workflow for

IsoSurface and Coordinate Cuts Rendered to 1600x1600 Pixel Image

Image compositing represents a different type of workload from the solver computation. As the

number of processors increases, the number of images to be composited increases, as does the

depth of the communication tree of processors which must communicate their images and depth

buffers. Thus, image compositing can grow more expensive with larger numbers of processors

as shown in fig. 3. In this study, VisIt relied on custom image compositing code which overlaps

image communication with the actual pixel compositing operations. Unfortunately, the custom

image compositing code appears to degrade in performance after 16K cores. In future work,

Ice-T, a powerful image compositing library that is known to scale well and provides many com-

munication optimizations could be used to further reduce the overhead associated with image

compositing.

3.2. XDB Workflow

The XDB workflow was scaled up to 32,768 cores on Titan using all 16 cores of the allocated

compute nodes. As with the rendering workflow the scaling numbers were obtained by running

AVF-LESLIE for 100 time steps, with in situ operations every 5 solver time steps, and analysing

its output logs. At each in situ time step, the AVF-LESLIE adaptor made Libsim function calls

to create isosurfaces of vorticity and save them to a FieldView XDB file. The surface was specified

using an input file to the adaptor which was interpreted and translated into Libsim function calls

for creating a VisIt plot to generate an isosurface. Export to XDB was performed by partitioning

the total MPI ranks with geometry into smaller write groups of 96 MPI ranks. Each write group

aggregated isosurface geometry locally within the group to a single MPI rank responsible for

writing a XDB file. When all groups completed writing their XDB file, the lead MPI rank wrote

a FieldView layout file, which contains a list of XDB files to later read in parallel to recreate

the entire surface extract geometry.

Over the course of the 100 time step runs, the time spent by AVF-LESLIE can be divided

into three main categories: solver time steps, I/O, and in situ. The solver time steps represented

the time that AVF-LESLIE spent solving and updating its physics variables. The AVF-LESLIE

runs were configured to output an initial plot file in PLOT3D format, followed by additional
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plot files every 100 time steps. Over the course of the short run, 2 sets of plot files were created

where the size of each plot file was roughly 51842 MB as shown in tab. 1. Over the same run, the

in situ routines created an isosurface of vorticity and wrote XDB files with the extract geometry

every 5 time steps. The size of the average set of XDB files for a single in situ time step was

between 260 MB and 266 MB, depending on the number of cores. When comparing the size of a

single plot file containing volume data and a set of XDB files representing an isosurface extract,

the extracts are around 200 times smaller. Given that the in situ extracts were written 20 times

more frequently than the plot files, adding up the total size of the XDB extracts is still 10 times

smaller than a single plot file.

Table 1. File Size Comparison

Cores 1 Volume File

(MB)

1 Extract

(MB)

1 Extract/

1 Volume

20 Extracts/

1 Volume

8192 51842 260 0.005 0.100

16382 51842 262 0.005 0.101

32768 51842 266 0.005 0.102

˜200x reduction ˜10x reduction

The relative timings of solver time steps, I/O, and in situ are shown in fig. 4. The over-

whelming majority of time is spent in the 2 calls to the I/O routines that write the full size

PLOT3D files. That is followed by the time spent computing 100 solver time steps, followed at

last by the in situ operations which were the least expensive in terms of time. When consider-

ing the actual overhead percentage added to the runtime of the simulation, for each 100 time

steps, in situ added between 1.6% and 2.4% to the simulation runtime. If one was to consider

an AVF-LESLIE run that performed absolutely no PLOT3D I/O then the overhead of in situ

increases to between 21% and 28% for writing isosurface extracts every 5 solver time steps. As

with any configurable operation, the overhead of in situ with respect to the overall runtime will

depend on its frequency of use. In this case, for 1/30th to 1/50th the cost of full I/O, 10 times

better temporal sampling was achieved and much less disk space was consumed by using in situ

extracts. The time spent further post-processing the XDB extract files in FieldView on a 12-core

MacOS X workstation with 64GB of memory was on the order of a few seconds per time step

to produce rendered images.

Conclusions

AVF-LESLIE was successfully instrumented for in situ using a combination of SENSEI,

Libsim+VisIt, and the XDB library. The instrumented version of AVF-LESLIE can produce

extract databases in the form of FieldView XDB files, which has proven to be a useful feature

that greatly reduces the data that would otherwise need to be saved. The savings were mea-

sured in both time and storage costs. Extract databases took 2-3% of the solver runtime when

also performing limited volume I/O and would further reduce the time spent during post hoc

analysis. The entire size of the extract database was 10 times smaller than PLOT3D volume

data while saving extracts 20 times more frequently. The surfaces in the extract database were

able to be visualized on a workstation instead of requiring a visualization cluster coupled to the
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Figure 4. AVF-LESLIE Timings with In Situ Data Extraction

supercomputer. In Situ technologies are maturing to the point that they can begin to accelerate

science and make the best use of HPC systems in spite of whatever I/O limitations might exist.
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