
HCA aware Parallel Communication Library: A feasibility

study for offloading MPI requirements

Kedar Kulkarni1, Shreeya Badhe1, Geetanjali Gadre1

c© The Authors 2016. This paper is published with open access at SuperFri.org

Message Passing Interface (MPI ) is a standardized message passing system, independent of

underlying network, and the most widely used parallel programming paradigm. The communica-

tion library should make full use of the Host Channel Adapter (HCA) characteristics to maximize

performance of the HPC cluster. The communication library may not able to take full advantage

of the underlying network adapter, if the library is made generalized. This can have a significant

impact on the performance.

Our primary goal is to develop a network dependent message passing library called a Parallel

Communication Library (PCL) that will exploit C-DAC’s proprietary PARAMNet HCA [1] fea-

tures for efficient message transfer. Using PCL, we intend to observe the feasibility of the network

and performance enhancement for additional features. The objective is to carry out different trials

by implementing additional features and analyze the implications which would give us more in-

sight towards suitability of transport offload/onload mechanism. This experimentation would give

us feedbacks for designing the next generation architecture.

Keywords: MPI, HCA, Communication Pattern Offloading, High Performance Networks,

Communication Library.

Introduction

Designing a high performance network is a critical and an arduous task. It involves work

at multiple layers. The work is carried out at both software and hardware front. The software

stack involves development of driver, communication library and message passing library. The

hardware development is mainly focused on low latency and high bandwidth data transfer, and

providing support for multiple protocols.

Today, typical High Performance Computing (HPC ) clusters are commodity based clusters

that employ OFED [2] software. OFED software provides interface to many applications regard-

less of underlying Host Channel Adapter (HCA). OFED software offers abstraction to the MPI

layer and handles all low level activities such as connection management, basic data structures

for connections, etc. Similarly, due to the communication stack hierarchy HCA becomes unaware

of end application communication pattern. Typically, proprietary network interconnect devel-

oper uses OFED software to run MPI based applications. HCA has to provide various features

in order to support OFED, such as unreliable datagram service to use OpenSM. Furthermore,

due to the standard and generic structure of the communication stack it is possible that the

upper layers may not exploit any additional feature provided by HCA that can improve the

performance of the entire HPC cluster.

Message Passing Interface (MPI ) [3] has become the de facto standard for writing parallel

applications in HPC domain. To increase the performance of a HPC cluster, the communication

library should exploit all HCA features efficiently. It may not be inappropriate to say that,

at least in case of proprietary networks that use standard software stack, the upper layers do

not comprehensively use of HCA features. This arises as a result of intricacy in modifying the

complete software stack.

1Centre For Development of Advanced Computing, Bangalore, India

DOI: 10.14529/jsfi160306

56 Supercomputing Frontiers and Innovations



Our primary goal is to develop a network dependent message passing library called a Parallel

Communication Library (PCL) for PARAMNet HCA. Using PCL, we intend to observe the

feasibility of the network with support of additional features. This would help us to evolve the

next generation architecture. Furthermore, any performance improvement observed would help

us in contributing to the entire HPC community.

1. Scope

Traditional HPC communication stack is a multi-layer architecture. The multi-layer archi-

tecture creates a layer of abstraction between an underlying network and upper communication

libraries. One peculiar problem with this approach is the communication library will not be

able to use additional features provided by an underlying HCA, even though making use of the

additional features could improve the performance. To extract maximum performance out of the

underlying network, the HCA and the communication library should work in complementary

manner. This paper describes a network dependent library, PCL, and its communication archi-

tecture for C-DAC’s PARAMNet HCA. Our goal is to develop a library that can provide MPI

like interface to the application, while exploring how these calls can be effectively implemented

using PARAMNet HCA features. The purpose for developing our own library is to study the

feasibility of HCA features that can be made available to the upper layers. Modifying standard

communication library is an intricate process. It is easy to develop the library and support only

necessary features. Using this approach, we can easily incorporate additional features in HCA

and make them visible to an application using PCL.

HCA 

Driver 

User Application 

PCL Abstraction Layer 

PCL Channel Layer 

PCL 

Figure 1. Communication Stack

K. Kulkarni, Sh. Badhe, G. Gadre

2016, Vol. 3, No. 3 57



2. Proposed Framework

The structure of PCL developed for PARAMNet HCA is shown in fig. 1. As shown in the

figure PCL is primarily divided into two parts: the PCL abstraction layer and the PCL channel

layer. The functionality of main components of PCL is as follows:

2.1. PCL Abstraction Layer

The PCL Abstraction layer provides application programming interface (API ) for PCL. We

have designed this layer to provide an interface similar to that of MPI. This layer is mainly

responsible for following set of responsibilities:

• Handling the communication Pattern

This layer handles the communication pattern that decides whether to use standard com-

munication course or to make use of the additional features. For example, this layer can

decide for small message whether to make use a low latency communication path or stan-

dard eager protocol.

• Managing connection data base

In PCL application, each process is assigned a rank. PCL abstraction layer creates a

data base for each rank. This data base holds all the information required for further

data transfer, such as each rank is mapped to which hardware resources (End-Points,

Completion Queues, etc).

• Buffer Management for Eager Protocol

PCL supports eager protocol for message transfer. Allocation of buffers and managing these

buffers are handled by PCL abstraction layer. The size of Eager buffer is programmable

and controlled by pcl eager threshold.

Like MPI, the PCL works on reliable connection service. Therefore, PCL abstraction layer

created all end-points in reliable connection mode. Along with reliable connection end-points,

PCL abstraction layer also reserves an end-point per rank in the unreliable connection mode.

2.2. PCL Channel Layer

The PCL Channel layer handles all the communication with PARAMNet HCA. This layer

handles responsibility such as posting work requests, creating an end-point. This layer hides low

level details such as depth of work-queues, structure of work requests, end-points, completion

queues and completion entry from the upper layer. This layer also translates hardware completion

format into simpler format.

Along with these two layers a bash script, pcl exec, is developed to work in background to

assist to run an application on PCL. It also assists PCL in its working. This bash script will work

as a daemon. It will spawn PCL processes, as user requests, on the nodes that are part of the

cluster. Furthermore, it will bind each process to distinct core while spawning PCL processes.

Presently, we have implemented following functionalities:

• pcl init

This module initializes the setup, establishes connection amongst all the ranks, fill the

receive work-queues with work requests in order to make every rank ready to accept data.

This module also allocates eager buffers and pin those buffers.

HCA aware Parallel Communication Library: A feasibility study for offloading MPI...

58 Supercomputing Frontiers and Innovations



• pcl finalise

This module is called for destroying all the HCA resources reserved during run time. Also,

it frees all the eager buffers.

• pcl send

This module sends user buffer data to the destined remote rank. The internal imple-

mentation decides whether to use Eager or Rendezvous mode. Although, Eager mode is

operational presently, and Rendezvous mode is under testing phase.

• pcl recv

This module polls on the receive data and after successful reception of data it copies

intended data from eager buffer to application buffer.

• pcl barrier

The barrier operation is performed across all processes. It blocks until all processes have

reached this routine. The detail implementation is explained in the next section.

3. Barrier Optimization

The Barrier function blocks the caller until all group members have called it. The function

does not return on any process until all group processes have called the function. Barrier is been

used by the applications quite frequently. The data transferred for barrier is very small as MPI

transfers just header information. Using PARAMNet HCA feature, we have optimized barrier

functionality for PCL. The barrier payload resides in the host memory. In typical implementation

of communication stack, the communication library posts barrier call. For the lower layer this

call is another data transfer requests, it simply post send work requests, which specify barrier

data transfer request, to the HCA. The HCA has to read this data from host memory and

then forward it to the destination. Typical PCI Express [4] latency for smaller host memory

read requests is quite high due to round trip latency. This increases barrier execution time.

PARAMNet HCA supports data in work request (inline data) feature. As explained earlier,

size of data transfer during barrier is very small, we implemented barrier functionality using

data in work request feature. In this support, while posting barrier call the payload for barrier

is also given to the HCA. In this implementation HCA avoids host memory read to fetch barrier

payload. Using data in work request feature, we have observed performance improvement upto

20%.

4. Conclusion and Future Work

This paper describes development of HCA aware Parallel Communication Library. Also, we

presented implementation of barrier functionality using feature supported by HCA and we have

observed performance improvement. We also realize that in order to meet higher performance,

the communication library must know underlying hardware and implement communication calls

accordingly.

In future, we plan to optimize collective calls such as Broadcast. We also plan to explore the

advantage of supporting vector data type processing. We also plan to comply with OpenFabrics

Interface (OFI) [5] which focuses on the development of software interfaces co-designed with

fabric hardware.

K. Kulkarni, Sh. Badhe, G. Gadre

2016, Vol. 3, No. 3 59



References

1. C-DAC, PARAMNet-3 Network Interface Card (NIC) based on Gemini Co-processor.

http://www.cdac.in/index.aspx?id=hpc_ss_nic

2. OpenFabrics Enterprise Distribution (OFED) Software Overview.

https://openfabrics.org/index.php/openfabrics-software.html

3. Message Passing Interface (MPI) Standards.

https://www.mpi-forum.org/. Last accessed: 2016-07.

4. PCI Express Specifications. https://pcisig.com/specifications

5. OpenFabrics Interfaces Working Group (OFIWG).

https://www.openfabrics.org/index.php/working-groups-overview.html/

HCA aware Parallel Communication Library: A feasibility study for offloading MPI...

60 Supercomputing Frontiers and Innovations


