
Spectral Domain Decomposition Using Local Fourier Basis:

Application to Ultrasound Simulation on a Cluster of GPUs

Jiri Jaros1, Filip Vaverka1, Bradley E. Treeby2

c© The Authors 2016. This paper is published with open access at SuperFri.org

The simulation of ultrasound wave propagation through biological tissue has a wide range of

practical applications. However, large grid sizes are generally needed to capture the phenomena of

interest. Here, a novel approach to reduce the computational complexity is presented. The model

uses an accelerated k-space pseudospectral method which enables more than one hundred GPUs to

be exploited to solve problems with more than 3 ×109 grid points. The classic communication bot-

tleneck of Fourier spectral methods, all-to-all global data exchange, is overcome by the application

of domain decomposition using local Fourier basis. Compared to global domain decomposition,

for a grid size of 1536 × 1024 × 2048, this reduces the simulation time by a factor of 7.5 and the

simulation cost by a factor of 3.8.

Keywords: domain decomposition, ultrasound simulation, spectral methods, GPU, FFT, local

Fourier basis.

Introduction

Accurately simulating the propagation of ultrasound waves through biological tissue has

a large number of practical applications, including the physics-based simulation of diagnostic

ultrasound images [1] and treatment planning for ultrasound therapy [2] (a more comprehensive

list is provided in [3]). However, ultrasound simulation for these applications is computationally

demanding due to the length scales involved, where the propagation length can be hundreds or

thousands of times longer than the acoustic wavelength. In turn, this leads to very large domain

sizes, in some cases with more than 100 billion grid points [2]. This puts the simulation times

beyond clinically useful time-limits, even when using significant computational resources [4]. The

overarching goal of this work is to maximise computational efficiency to minimise the wall-clock

time needed to solve such large scale problems.

One of the biggest challenges in performing large-scale ultrasound simulations is the accu-

mulation of numerical dispersion. In general, this can be overcome through the application of

spectral methods, which can be considered memory minimising due to their exponential error

convergence with grid density [5]. For wave problems, the k-space pseudospectral method is par-

ticularly efficient. This combines the spectral calculation of spatial gradients (using the Fourier

collocation spectral method) with a dispersion-corrected finite difference scheme to integrate

forward in time. This approach was first proposed in [6] and further developed in [7–9]. The

parallel implementation of the k-space pseudospectral method has previously been described

by several groups [2, 10–13]. Aside from a number of element-wise matrix operations, the most

significant operations performed at each time step are multiple real-to-complex and complex-to-

real 3D fast Fourier transforms (FFTs). The parallel efficiency of the method therefore depends

primarily on the parallel efficiency of the FFT. Note, in the conventional pseudospectral time

domain method, the FFTs are 1D. However, for the k-space method, the FFTs are 3D, as the

dispersion correction step is applied in the spatial Fourier domain.

The biggest challenge in the calculation of the 3D FFT is a globally synchronising all-

to-all data exchange. This is required to transpose the 3D matrix data, as the FFT cannot

1Faculty of Information Technology, Brno University of Technology, Brno, CZ
2Department of Medical Physics and Biomedical Engineering, University College London, London, UK

DOI: 10.14529/jsfi160305

40 Supercomputing Frontiers and Innovations

stride across data belonging to multiple processes. Despite the large amount of progress on

optimizing the implementation of distributed FFTs, the inherent communication bottleneck still

limits scaling efficiency. The distributed FFT implementations deployed on CPU clusters usually

achieve scaling factors between 1.5 and 1.8 when the number of processing elements is doubled.

Pippig [14] reported a comparative study of FFTW [15], PFFT [14], and P3DFFT [16] using

an IBM Blue Gene machine. Similar investigations using Intel-Infiniband clusters were reported

in [13, 17, 18]. In general, the majority of the execution time is spent in communication. For

typical ultrasound simulations with grid sizes ranging from 5123 to 20483 grid points, when

distributed over more than 512 CPU cores, 50-90% of the execution time is wasted waiting for

data exchanges [2].

The imbalance between communication and computation is even more striking when graph-

ics processing units (GPUs) are used, as the raw performance of GPUs is an order of magnitude

above current central processing units (CPUs). In addition, transfers over the peripheral compo-

nent interconnect express (PCI-E) bus have to be considered as another source of communication

overhead. The implementation proposed by Gholami [17], which is currently one of the most

efficient, reveals the fundamental communication problem of distributed GPU FFTs. For an

10243 FFT calculated using 128 GPUs, the communication overhead accounts for 99% of the

total execution time. Although the execution time reduces by 8.6× for a 32× increase in the

number of GPUs (giving a parallel efficiency of 27%), this overhead may be acceptable in many

applications.

One way to overcome the global communication imposed by the Fourier spectral method

is to use a local Fourier basis as proposed by Israeli, et al [19]. This allows the evaluation of

derivatives to be splitted into multiple coupled subdomains, where the Fourier transforms for

each subdomain are computed independently, followed by the exchange of data in an overlap

or halo region. The spectral accuracy is maintained by forcing the local domains to be periodic

through multiplication of the local data by a bell function. The bell function is equal to one

within the physical domain, and tapers to zero within the overlap region [20]. Using local,

Founer basis rather than global ones, FFTs can have a significant impact on the computational

performance of Fourier spectral methods. For example, Ding & Chen implemented a solution

to Maxwell’s equations using local Fourier basis [21]. For the simulation with 10243 grid points

running on 32 CPUs, they reported reduction in communication time from 9.49 seconds per

time step when using global FFTs, to 1.46 seconds per time step when using local Fourier basis

with 32 subdomains. Similarly, Garbey, et al reported close to ideal weak scaling when using

local Fourier basis to solve a combustion problem using up to 16 processors [22].

In the current work, domain decomposition using local Fourier basis is combined with the

k-space pseudospectral method to allow the highly efficient simulation of ultrasound propagation

using a cluster of 128 GPUs with grid sizes up to 1024 × 1536 × 2048. The governing equations

and their discretisation are discussed in Sec. 2, with the local decomposition introduced in Sec. 3.

Details of the parallel implementation are given in Sec. 4, with numerical experiments presented

in Sec. 5. Summary and discussion are then given in Sec. 6.

1. Pseudospectral Ultrasound Model

The physical problem considered here is the propagation of small amplitude acoustic waves

through a homogeneous and lossless fluid medium. In this case, the governing equations are

J. Jaros, F. Vaverka, B.E. Treeby

2016, Vol. 3, No. 3 41

given by a set of coupled first-order partial differential equations [23]

∂u

∂t
= − 1

ρ0
∇p ,

∂ρ

∂t
= −ρ0∇ · u , p = c2

0ρ . (1)

Here u is the acoustic particle velocity, p is the acoustic pressure, c0 is the sound speed, and

ρ0 and ρ are the ambient and acoustic density, respectively. The governing equations are solved

using the k-space pseudospectral method, where spatial gradients are computed using the Fourier

collocation spectral method, and time integration is performed using a dispersion-corrected finite

difference scheme [8]. Written in discrete form, the governing equations in Eq. (1) become [2, 9]

∂

∂ξ
pn = F−1

{
ikξ κ e

ikξ∆ξ/2F
{
pn
}}

,

u
n+

1
2

ξ = u
n−1

2
ξ − ∆t

ρ0

∂

∂ξ
pn

∂

∂ξ
u
n+

1
2

ξ = F−1

{
ikξ κ e

−ikξ∆ξ/2F
{
u
n+

1
2

ξ

}}
,

ρn+1
ξ = ρnξ −∆tρ0

∂

∂ξ
u
n+

1
2

ξ ,

pn+1 = c2
0

∑

ξ

ρn+1
ξ . (2)

The first four equations are repeated for each Cartesian direction, where ξ = x, y, z. Here, F and

F−1 denote the forward and inverse FFT over all three spatial dimensions, i is the imaginary

unit, kξ is the wavenumber vector in the ξ direction, ∆ξ is the grid spacing in the ξ direction, ∆t

is the time step, and κ is the so-called k-space operator used to correct for numerical dispersion

introduced by the finite difference time step [8]. The acoustic density (which is physically a

scalar quantity) is artificially divided into Cartesian components to allow an anisotropic perfectly

matched layer (PML) to be applied to model free-field conditions [24]. The exponential terms

are spatial shift operators that allow the particle velocity to be evaluated on a staggered grid [8].

The superscripts n and n+ 1 denote the function values at the current and next time points,

and n− 1
2 and n+ 1

2 at time staggered points.

The implementation of the discrete equations requires the storage of thirteen real 3D ma-

trices defined in the spatial domain and three real and one complex 3D matrix defined in the

Fourier domain. These are used to store the current values of the acoustic variables, their deriva-

tives, and three temporary matrices. For a single precision shared memory implementation, the

memory usage can be estimated as

memory usage [GB] ≈ 16.5×Nx×Ny×Nz

10243/4
, (3)

(neglecting scalars, 1D arrays, and the code itself). At each time step, the operations performed

consist of four forward and six inverse 3D FFTs, and around 100 element-wise matrix operations.

Previously, this type of model has been implemented using C++ and parallelised using ei-

ther OpenMP, with simulations reported up to 1024 × 1024 × 1024 grid points [9], or MPI,

with simulations reported up to 4096 × 2048 × 2048 grid points [2, 10, 11]. In both cases, the

3D FFTs are calculated over the entire 3D domain, which requires an all-to-all global commu-

nication for each FFT. Although reasonable scaling is observed, particularly when using hybrid

OpenMP/MPI decomposition [13], ten all-to-all communications are still required per time step,

which is a major bottleneck in performance [2].

Spectral Domain Decomposition Using Local Fourier Basis: Application to Ultrasound...

42 Supercomputing Frontiers and Innovations

2. Local Fourier Basis decomposition

2.1. Formulation

As described in Sec. , the motivation behind domain decomposition using local Fourier basis

is to replace the global FFTs by local FFTs computed independently on a series of subdomains.

The general approach as applied to the k-space pseudospectral method can be described as

follows. First, the field variables and material parameters are divided across the subdomains,

including an overlap region (halo) with a specified width (see fig. 1). Here, the so-called non-

overlapped decomposition is used [25], and the subdomains are assumed to always be of an equal

size. Second, for each subdomain, an independent version of the complete k-space pseudospectral

model is run. The spatial gradients are calculated as normal using local Fourier basis, but

before taking the FFT, the halo is exchanged and function values are multiplied by a bell

function. This tapers to zero within the overlap region to enforce periodicity. Here, the erf-like

bell function defined by Boyd is used [25]. This is equal to 1 within the physical domain and given

by H(x) = 1
2(1 + erf(Lx/

√
1− x2)) within the overlap region, where L is a scaling parameter,

which in this case is set to 2. The discrete values for x within the overlap region are given by

x = −1,−1 + 2/(N − 1), . . . , 1, where N is the size of the overlap in grid points.

sub-domain 1

total domain

data transfer at each time step

overlap region

physical domain

data initially copied to subdomains

sub-domain 2

sub-domain 3

Figure 1. Schematic showing domain decomposition using local Fourier basis

2.2. Multidimensional decomposition

In 3D, there are several approaches to the decomposition of the global domain into subdo-

mains, including 1D slab decomposition, 2D pencil decomposition, and 3D cube decomposition.

The main differences are the number of interfaces a wave must travel through when traversing

the grid in a given direction (this affects accuracy as discussed in Sec 2.3), the ratio between the

halo and local subdomain size, and the number of data transfers that have to be performed [26].

The ratio between the halo and the local subdomain size improves with the dimensionality of

J. Jaros, F. Vaverka, B.E. Treeby

2016, Vol. 3, No. 3 43

the decomposition. For a fixed number of subdomains, higher dimensionality implies a smaller

amount of data that must be exchanged and consequently lower computational overhead. On the

other hand, the number of direct neighbours grows with the dimensionality of the decomposition,

i.e., there are 2, 8, and 26 direct neighbours for uniform 1D, 2D, and 3D decompositions, respec-

tively. Since the interconnection bandwidth is not constant for all message sizes [27], in some

cases it may be better to use 1D decomposition instead of 2D or 3D, even if a larger amount

of data must be exchanged among a smaller number of neighbours. The impact of different

decompositions on performance is discussed in Sec 4.3.

2.3. Accuracy

To test the accuracy of domain decomposition using local Fourier basis, a series of numerical

experiments were conducted using a prototype CPU code. The tests consisted of propagating

a plane wave along the grid axis (which reduces to a 1D problem) with the global domain

divided into a given number of subdomains with a specified overlap width. The initial particle

velocity was set to zero, and the initial pressure was set to be an impulsive pressure source. The

spatial distribution of the pressure source was defined as a delta function (filtered by a Blackman

window) positioned within the first subdomain. This generates a wave with broadband frequency

content that smoothly decays up to the Nyquist limit [28]. For each test, a reference simulation

using a global spectral method was also performed.

First, the dependence of the error on the width of the overlap region was examined. The

total domain size was fixed at 512 grid points, and the overlap size varied from 8 to 32 grid

points. The variation in L∞ error compared to the reference simulation is shown in fig. 2(a).

For an overlap width of 32 grid points, the error has not reached machine precision. However,

the equivalent accuracy of the PML is only on the order of 10−3 to 10−4, even with optimized

parameters [29]. Given accuracy of the global solution is limited by the accuracy of the PML. It is

sufficient to maintain a similar level of accuracy for the domain decomposition. Thus an overlap

of 16 grid points was chosen, which gives an error less than 10−4 when using two subdomains.

The change in the error for a fixed overlap size of 16 grid points with the total size of the local

subdomain is shown in fig. 2(b). There is almost no change in the error for subdomain sizes

from 32 to 1024 grid points, which means the size of the subdomains can be chosen to maximise

computational efficiency.

Next, the dependence of the error on the number of domain cuts the wave must traverse

was examined (for 1D decomposition, the number of domain cuts is one less than the number

of subdomains). The total domain size was fixed at 2048 grid points with an overlap size of 16

grid points, and the number of subdomains was increased from 2 to 32 (in powers of 2). The

variation in L∞ error compared to the reference simulation is shown in fig. 2(c), and the error

growth relative to using 2 subdomains is shown in fig. 2(d). The error increases linearly with the

number of domain cuts the wave traverses, with a slope of ∼0.5. Thus, for typical sized problems

(on the order of 2048 grid points in each dimension), up to 31 domain cuts (i.e., 32 subdomains

if using 1D decomposition) can be used in each dimension with an overlap size of 16 grid points,

and the error is still on the order of 10−3. For 3D decomposition, this corresponds to 32,768 total

subdomains (and in this case, GPUs). This means in practice, the level of achievable parallelism

is not limited by the reduction in accuracy due to the use of local Fourier basis.

Spectral Domain Decomposition Using Local Fourier Basis: Application to Ultrasound...

44 Supercomputing Frontiers and Innovations

4 8 12 16 20 24 28 32
0

0.5

1

1.5
x 10

−3

L ∞
 e

rr
or

Number of Subdomains

(c)

4 8 12 16 20 24 28 32
0

5

10

15

20

Er
ro

r G
ro

w
th

(d)

8 16 24 32
10

−5

10
−4

10
−3

L ∞
 e

rr
or

Overlap Size

 (a)

10
−5

32 128 256 384 512 640 768 896 1024

10
−4

10
−3

L ∞
 e

rr
or

Local Grid Size

(b)

Number of Subdomains

Figure 2. (a) Change in the L∞ error with the overlap (halo) size for a fixed local domain size

of 512 grid points. (b) Change in the L∞ error with the local domain size for a fixed overlap

(halo) size of 16 grid points. (c) Change in the L∞ error with the number of domain cuts the

wave must traverse for a total domain size of 2048 grid points and a fixed overlap size of 16

grid points. For 1D decomposition, the number of domain cuts is one less than the number of

subdomains, where 2 subdomains corresponds to a local domain size of 1024 grid points, and 32

subdomains corresponds to a local domain size of 64 grid points. (d) Growth in the error with

the number of subdomains relative to 2 subdomains (i.e., 1 domain cut)

3. Implementation

3.1. Communication framework

The numerical model described in Secs. 1 and 2.1 was implemented for multiple NVIDIA

GPUs using MPI, C++, and CUDA. The implementation was divided into two components,

the first responsible for the initial domain decomposition and periodic halo exchanges, and the

second for performing calculations on each local subdomain. Starting with the communication

framework, after the simulation is started, the number of subdomains and their organisation

in 3D space is determined by parsing command line arguments. The framework supports any

1D, 2D, or 3D partition that fits into on-board GPU memory and meets the minimum size

requirements. Each subdomain is assigned to an MPI process. In the case of 1D decomposition,

the processes are grouped into an MPI communicator. If 2D or 3D decomposition is chosen, a

virtual Cartesian topology is created and MPI is allowed to reorder ranks to preserve spatial

locality between neighbouring subdomains. This is particularly useful while working on clusters

with multiple GPUs per node.

The next step is GPU acquisition. Every MPI process (rank) inspects the configuration

of the node being executed on, and chooses the first free GPU. This allows the framework to

run on both slim and fat nodes with multiple GPUs, even in the case of non-uniform clusters

(i.e., a mixture of nodes with a different number of integrated GPUs such as the Emerald

cluster discussed in Sec. 4.1). The user (cluster batch scheduler) is responsible for assigning the

correct number of ranks to individual nodes matching the number of integrated GPUs. The

batch scheduler can also assign GPUs directly to ranks. If this feature is not supported by the

scheduler and the GPUs are switched into exclusive process compute mode [30], the framework

calculates the best assignment automatically and ensures mutual exclusion between ranks.

J. Jaros, F. Vaverka, B.E. Treeby

2016, Vol. 3, No. 3 45

The execution proceed with the simulation setup. First, the simulation input file is opened

and the simulation parameters are loaded. When the simulation domain size is determined,

the framework calculates the size and position of the local subdomains, quantifies the size of

the halo regions, and allocates all necessary data structures on both the CPU and GPU. The

simulation data is then loaded from the input HDF5 file using parallel I/O and transferred into

GPU memory.

The simulation time loop is divided into computation and communication phases. In total,

there are four data exchanges per time step. These precede the gradient calculation for the

acoustic particle velocity u in each Cartesian direction, and the gradient calculation for the

acoustic pressure p (see Eq. (2)). The derivatives of the three spatial components of acoustic

particle velocity can be calculated independently, which allows the MPI communications to be

partially overlapped with the calculation (this is not possible for the calculation of the pressure

gradient). During the data exchange, the halos are extracted from all three 3D matrices of

velocity, packed into line-up buffers and downloaded to the CPU. This is done by repeated

invocations of simple packing CUDA kernels followed by PCI-E transfers. This way the traffic

over PCI-E is minimized. Next, the corresponding MPI_Isends and MPI_Irecvs are launched.

The number of transfers depends on the decomposition chosen and varies between 4 (in the case

of 1D decomposition) and 52 (in the case of full 3D decomposition). The execution only waits for

the ux halo to be delivered, uploads the halo back to the GPU, and replaces the appropriate data

values. This is done by a PCI-E transfer followed by a CUDA unpack kernel. The calculation

of ∂
∂xux is then started while the other four transfers proceed in the background. Thus this

implementation partially hides two of three MPI communications.

3.2. Computation framework

The computation framework orchestrates all the necessary calculations in a simulation. It is

divided into pre-processing, simulation time loop, data collection, and post-processing phases.

The calculations are performed either as calls to the cuFFT library [31], or to custom CUDA

kernels. Note, all calculations are performed by the GPU and the CPU only assists with the

halo exchange and I/O operations. Since the size of the local subdomains has not been known

in advance, several auxiliary variables are calculated during pre-processing, including the local

wavenumber vectors, bell function, FFT shifts for staggered grids, etc [2]. The cuFFT library is

then initialised and the FFT execution plans are created.

The simulation time loop then follows Eq. (2). The gradient calculations are performed

by CUDA kernels which compute the required element-wise operations in both the spatial and

Fourier domains. The kernels are organised into 1D CUDA grids composed of 1D CUDA blocks.

The grid size is based on the actual number of CUDA multiprocessors (16 blocks per multipro-

cessor), and the block size is fixed to 256 threads. Every thread is responsible for processing

multiple grid elements. The benefit of this solution is high occupancy and memory bandwidth.

The same type of CUDA kernel is also used for halo packing and unpacking, as well as for sam-

pled data aggregation and collection. The output data aggregation and post processing steps

are described in more detail in [2].

Spectral Domain Decomposition Using Local Fourier Basis: Application to Ultrasound...

46 Supercomputing Frontiers and Innovations

4. Experimental results

4.1. Hardware description

The proposed implementation was deployed and evaluated on two GPU supercomputers,

Emerald (e-Infrastructure South, UK) and Anselm (IT4Innovations national supercomputing

center, CZ). Emerald is a heterogeneous GPU cluster consisting of several types of nodes

equipped with different numbers and models of GPUs. Our allocation was limited to 128 NVIDIA

Tesla M2090 cards with 6 GB of on-board memory. As error correction code (ECC) is switched

on, the on-board memory capacity is reduced to approximately 5.4 GB. The GPUs are grouped

in configurations of 3 or 8 per node, connected by PCI-Express 2.0. In the case of the 8-GPU

configuration, pairs of GPUs share 16 PCI-E links. The CPU side is always comprised of two

6-core Westmere processors and 48 or 96 GB of RAM. The interconnection is provided by a

40 Gb/s half-duplex InfiniBand interconnect arranged into a fat-tree topology. The aggregated

theoretical GPU performance is 170 TFLOPS in single precision, and the aggregated on-board

memory is 768 GB.

Anselm consists of 209 compute nodes with a 40 Gb/s full-duplex InfiniBand interconnect

arranged into a fat-tree topology. Each node integrates two 8-core Sandy Bridge CPUs and 64

GB of RAM. Twenty three nodes are equipped with one NVIDIA Kepler K20m GPU card with

5 GB of on-board memory and with ECC switched off. The GPUs are connected by PCI-Express

2.0. Our allocation was limited to 16 GPU cards. The aggregated GPU performance in single

precision is 56 TFLOPS, and the aggregated on-board memory is 80 GB. For both systems,

the GPU simulation code was compiled with the Intel compiler 2015, Intel MPI 5.0, NVIDIA

CUDA 7.5, and HDF5 1.8.16. For comparison, a CPU implementation using global domain

decomposition was used [2]. This code was compiled with the same tool chain, in addition to

the FFTW 3.3.4 library.

4.2. Strong scaling

Several numerical experiments were performed to assess the performance of the multi-GPU

implementation. First, strong scaling was assessed using domain sizes from 2563 to 1024 ×
1024 × 2048 grid points with an overlap size (halo width) of 16 grid points. The problem sizes

were limited by the aggregated amount of on-board memory and restrictions imposed by the

smallest subdomain size. For Emerald, the scaling was investigated using up to 128 GPUs on

the full range of simulation sizes (fig. 3(a)). Since our allocation on Anselm was limited to 16

GPUs, the largest domain size tested was 512× 512× 1024 grid points (fig. 3(b)). The domain

was partitioned over all three axes into a uniform number of subdomains starting from 1× 1× 1

(i.e., running on a single GPU) up to 4 × 4 × 8 and 2 × 2 × 4 for the largest domain sizes on

Emerald and Anselm, respectively.

Overall, the code achieves a reasonable scalability. On Emerald, for larger domain sizes the

best parallel efficiency is approximately 27% when increasing from 8 to 128 GPUs, 34% from

16 to 128 GPUs, and 55% from 32 to 128 GPUs. In comparison, the strong scaling on Anselm

reaches better values of parallel efficiency, reaching approximately 47% when increasing from

2 to 16 GPUs, 56% from 4 to 16 GPUs, and 85% from 8 to 16 GPUs. These levels of parallel

efficiency are caused by a combination of multiple factors:

1. As the domain size grows, there is an increase in the number of neighbours the halo must be

exchanged with. Since the number of GPUs is initially small, the decomposition is first done

J. Jaros, F. Vaverka, B.E. Treeby

2016, Vol. 3, No. 3 47

Number of GPUs
1 2 4 8 16 32 64 128

4

8

16

32

64

128
Ti

m
e

pe
r 1

00
 ti

m
es

te
ps

 [s
]

(a)

(c)
1 2 4 8 162

4

8

16

32

64

Number of GPUs

Ti
m

e
pe

r 1
00

 ti
m

es
te

ps
 [s

]

(b)

4 8 16 32 64 128
4

8

16

32

64

128

Number of GPUs

Ti
m

e
pe

r 1
00

 ti
m

es
te

ps
 [s

]

1 × 1 × N

256 × 256 × 256

256 × 256 × 256

256 × 256 × 512

256 × 256 × 512256 × 512 × 512

256 × 512 × 512
512 × 512 × 512

512 × 512 × 512
512 ×
512 × 1024

512 × 512 × 1024512 ×
1024 ×1024

1024 ×
1024 ×1024

2 × 2 × N/4

4 × 4 × N/16

1024 ×
1024 ×2048

Figure 3. Strong scaling plots for (a) Emerald with 1-128 GPUs, and (b) Anselm with 1-16

GPUs. (c) The influence of different decomposition of the simulation domain of 256×256×2048

on the strong scaling observed on Emerald. One-dimensional decomposition is compared with

half and full 3D decomposition with 2, 11, and 26 neighbours, respectively

in 1D (2 GPUs), followed by 2D (4 GPUs) and 3D (8 GPUs) with only a single neighbour

in each dimension. This situation will be referred to as half decomposition. For 16 and more

GPUs, the decomposition turns into the full version with neighbours on both sides. This is

done first in the x direction (16 GPUs), followed by the y direction (32 GPUs). The first

complete full decomposition is employed for 64 GPUs, where the decomposition is 4×4×4.

The growing number of neighbours has a direct impact on the number of extraction/injection

CUDA kernels, as well as the number of MPI communications to be performed.

2. On Emerald, the GPUs are packed into fat nodes sharing PCI-E links and the network

adapter. The situation is worse in the case of 8-GPU nodes, where pairs of GPU cards share

16 links and the PCI-E bandwidth is halved. Moreover, 4 GPUs are connected to a single

CPU socket creating contention in RAM.

3. Since the amount of on-board memory is limited, this also limits the total domain sizes. In

the finest decomposition, the local subdomain only contains 64× 64× 64 grid points, which

makes the calculation time very small compared to the communication time. Moreover, for

such a small subdomain, the halo accounts for 70% of the grid points in the local subdomain.

The situation improves as the size of the local subdomains is increased. Unfortunately, the

biggest subdomain that fits into on-board memory is approximately 256×256×512. In this

case, the halo accounts for around 25% of the local grid points.

Finally, comparing both systems, Anselm reaches almost twice the performance of Emerald.

This is due to the combined effects of newer GPUs with higher performance and on-board

memory bandwidth, ECC being switched off, and only a single GPU per node.

Spectral Domain Decomposition Using Local Fourier Basis: Application to Ultrasound...

48 Supercomputing Frontiers and Innovations

4.3. Decomposition comparison

Next, the influence of the domain decomposition shape on strong scaling was investigated

on Emerald, using a global domain size of 256 × 256 × 2048, a halo width of 16 grid points,

and 4 to 128 GPUs. A 1D decomposition was used, where the domain is cut over the longest

dimension into N partitions, with N corresponding to the number of GPUs. For comparison, a

half 3D decomposition with 11 neighbours cut into 2 × 2 × N/4, and a full 3D decomposition

with 26 neighbours cut into 4× 4×N/16 were also tested. As shown in fig. 3(c), the impact on

performance is significant. The additional communication overhead arising from using a higher

dimensionality decomposition with an increased number of neighbours directly translates into

a performance drop. An obvious conclusion is that wherever possible, a 1D decomposition is

preferred. When this is not possible due to an unacceptable level of numerical accuracy (the

numerical error scales with the number of cuts along an axis as discussed in Sec. 2.3) or the

subdomains being excessively small, a half 3D decomposition is preferred. Compared to the full

3D decomposition, the half decomposition reduces the simulation time by a factor of at least 2,

which correlates with the reduced number of neighbours.

4.4. Simulation time breakdown

Next, the composition of the simulation time was investigated. Only the simulation loop

was considered, as the initialisation, pre-processing, and post-processing phases usually take

on the order of minutes, while realistic simulations may run for many hours. Figure 4 shows

the simulation time breakdown for a domain size of 256 × 256 × 1024, a halo width of 16 grid

points, and 1D domain decomposition executed on Emerald and Anselm with 2 to 16 GPUs.

Apart from faster execution on Anselm (due to faster GPUs), a difference in the PCI-E and

MPI overhead may be observed. Although not clearly visible, the PCI-E latency on Emerald

is almost 25% higher due to main memory congestion and shared PCI-E links. In addition, a

higher MPI latency on Emerald is clearly noticeable. This is because Emerald only supports

half-duplex, which decreases the MPI bandwidth by a factor of two. Furthermore, all inter-node

communications are done via the main memory, which becomes the ultimate bottleneck. For

the highest number of GPUs, where the local domain size is 256 × 256 × 64, the percentage of

time spent performing calculations, communications using PCI-E, and communications using

MPI is 32%, 10%, and 58% for Emerald, and 40%, 17%, and 43% for Anselm, respectively.

In comparison, previous implementations using global domain decomposition have reported the

time spent performing calculations is below 1% on a GPU cluster [17], and 30% on a CPU

cluster [13].

4.5. Influence of halo width

The influence of halo width (overlap size) on the communication overhead was investigated

on Emerald using a simulation size of 5123 grid points partitioned over all three dimensions with

a halo width of 8, 16, or 32 grid points. The simulations were executed on 4 to 128 GPUs, with

the time break down shown in fig. 5. The increase in the PCI-E and MPI overhead when the halo

becomes larger is evident. When the halo size is 8 grid points, there is only a small overhead.

However, when the overlap is increased to 32 grid points, the communication overhead prevents

the code from scaling beyond 16 GPUs. Although the PCI-E latency remains at promising

levels and scales with the number of GPUs, the MPI latency is the ultimate bottleneck. The

J. Jaros, F. Vaverka, B.E. Treeby

2016, Vol. 3, No. 3 49

(a) Emerald (b) Anselm

2 4 8 16
0

5

10

15

20

25

30

35

Number of GPUs

Ti
m

e
pe

r 1
00

 ti
m

es
te

ps
 [s

]

2 4 8 16
Number of GPUs

Comp
PCI−E
MPI

Figure 4. Breakdown of the execution time for a simulation domain size of 256 × 256 × 1024

comprising of the computation part, MPI transfers between nodes, and PCI-E transfers between

CPU and GPU

slight increase in the computation time across the three overlap sizes is due to the increase in

local subdomain size with the halo size. The rise in MPI overhead as the number of GPUs is

increased between 4 and 16 can be attributed to the transition from half 3D decomposition to

full 3D decomposition. A halo width of 16 grid points was ultimately chosen as an acceptable

compromise between performance and accuracy.

4 8 16 32 64 128
0

20

40

60

Number of GPUs

4 8 16 32 64 128 4 8 16 32 64 128
Number of GPUs

Ti
m

e
pe

r 1
00

 ti
m

es
te

ps
 [s

]
Ti

m
e

pe
r 1

00
 ti

m
es

te
ps

 [s
]

0

20

40

60

Comp
PCI−E
MPI

(a) Overlap 8 grid points

(b) Overlap 16 grid points

(c) Overlap 32 grid points

Figure 5. The influence of the overlap (halo) width on the overhead comprising of MPI and

PCI-E transfers. The investigation was conducted on Emerald using a simulation size of 5123, a

halo width of 8, 16 and 32, and between 4 and 128 GPUs

4.6. Comparison of GPU and CPU

Finally, the GPU implementation using local Fourier decomposition was compared with an

existing CPU implementation using global decomposition [13]. Several benchmark simulations

were performed on Emerald and Anselm using three domain sizes (2563, 5123 and 10243) as

shown in fig. 6. Here the horizontal axis corresponds to either the number of GPUs, or the

number of CPU nodes (each of which integrates 16 processor cores). This grouping is used to

estimate the simulation cost, which is charged per node on Anselm, regardless of whether the

GPU is used. In comparison, Emerald has a different charge policy, with higher prices charged

per GPU.

Figure 6(a) reveals that for small domain sizes, Anselm’s GPUs are much faster than the

CPU implementation when the number of nodes employed is small. Here, the simulation cost

Spectral Domain Decomposition Using Local Fourier Basis: Application to Ultrasound...

50 Supercomputing Frontiers and Innovations

Ti
m

e
pe

r 1
00

 ti
m

es
te

ps
 [s

]
(a) 256 × 256 × 256

8

16

32

64

128

Ti
m

e
pe

r 1
00

 ti
m

es
te

ps
 [s

]

(b) 512 × 512 × 512

32

64

128

256

1 2 4 8 16 32 64 128
Number of GPUs or Number of CPU nodes

1 2 4 8 16 32 64 128
Number of GPUs or Number of CPU nodes

1 2 4 8 16 32 64 128
Number of GPUs or Number of CPU nodes

Ti
m

e
pe

r 1
00

 ti
m

es
te

ps
 [s

]

(c) 1024 × 1024 × 1024

2

4

8

16
Anselm CPU
Anselm GPU
Emerald GPU

Figure 6. Performance comparison between local Fourier basis decomposition running on GPUs

(Emerald and Anselm) and global domain decomposition running on CPUs (Anselm). In the

case of the CPU implementation, the number of GPUs translates to the number of nodes, each

of which contains 16 CPU cores

can be significantly reduced by utilising GPUs. The compute times for Anselm’s GPUs and

CPUs meet at 16 GPUs/nodes, where the local subdomains are extremely small. Emerald’s

GPUs seem to be too slow for such a small domain, where the communication is dominant.

Figure 6(b) shows the same results for a larger domain size. Here, Anselm’s GPUs outperform

the comparable number of CPU cores. When the number of nodes is doubled (32 nodes or 512

CPU cores against 16 GPUs), the CPU cluster is faster by a factor of 1.28, however, for a

doubled price. Emerald’s GPUs beat Anselm when all 128 GPUs are used in the computation.

The last benchmark shown in fig. 6(c) illustrates the benefits of the GPU implementation for

larger domain sizes. Here 128 GPUs are faster than a cluster of 1024 CPU cores in 64 nodes

by a factor of 1.76. Considering these 128 GPUs could be packed in 16 GPU nodes, this is a

significant result. Note, the CPU code is limited by 1D slab decomposition so it is not possible

to employ more cores than 256, 512 and 1024 for the domain sizes tested.

4.7. Production simulation

To show the impact of the proposed multi-GPU implementation on the type of ultrasound

simulations used for treatment planning in focused ultrasound surgery, a comparison is given

of the execution time and the financial aspects of running a single simulation using a grid size

of 1536 × 1024 × 2048 with 48,000 time steps performed as a part of the characterisation of a

high-intensity focused ultrasound (HIFU) transducer used to treat prostate cancer. The output

of such a simulation is given in fig. 7, which shows the maximum steady state acoustic pressure

in a 2D plane in front of the transducer. Table 1 illustrates that a cluster of 128 GPUs is able

J. Jaros, F. Vaverka, B.E. Treeby

2016, Vol. 3, No. 3 51

to deliver the simulation result in 9 hours and 29 minutes for the price of 426 USD (calculated

based on the Emerald charge rate of 35.13c per GPU hour). Comparing this with the best price

performance on the CPU cluster, the simulation can be completed in 3 days for 1,623 USD, or

2 days and 5 hours for 2,395 USD (calculated based on the Anselm charge rate of 8.8c per core

hour). If price is the primary concern, as many tens of simulations are usually performed during

any particular study, the GPU cluster can reduce the simulation time by a factor of 7.5 and

the simulation cost by a factor of 3.8. The ultimate conclusion is that a GPU cluster is much a

better solution for this type of simulation.

Table 1. Simulation time and cost when running a

production simulation on Emerald with 96 and 128

GPUs, or Anselm with 128, 256, 512 CPU cores.

Simulation Time Simulation Cost

96 GPUs 14h 9m $475

128 GPUs 9h 29m $426

128 CPU cores 6d 18h $1,826

256 CPU cores 3d 0h $1,623

512 CPU cores 2d 5h $2,395

La
te

ra
l P

os
iti

on
 [m

m
]

Axial Position [mm]

10

20

30

40

100
0

20 30 40 50 60

Figure 7. Pressure field from a prostate ultrasound transducer simulated using a domain size of

1536× 1024× 2048 grid points (45× 30× 60 mm) with 48,000 time steps (60 µs) calculated in

9 hours and 29 minutes on 128 GPUs

Conclusion

This paper has presented a novel multi-GPU implementation of the Fourier spectral method

using domain decomposition based on local Fourier basis [19]. The fundamental idea behind this

work is the replacement of the global all-to-all communications introduced by the FFT (used

to calculate spatial derivatives) by direct neighbour exchanges. By doing so, the communication

burden can be significantly reduced at the expense of a slight reduction in numerical accuracy.

The accuracy is shown to be dependent on the overlap (halo) size and independent on the local

domain size. And to increase linearly with the number of domain cuts an acoustic wave must

traverse. For an overlap (halo) size of 16 grid points, the error is on the order of 10−3, which is

comparable to the error introduced by the PML. Consequently, the level of parallelism achievable

in practice is not limited by the reduction in accuracy due to the use of local Fourier basis.

Spectral Domain Decomposition Using Local Fourier Basis: Application to Ultrasound...

52 Supercomputing Frontiers and Innovations

Strong scaling results demonstrate that the code scales with reasonable parallel efficiency,

reaching 50% for large simulation domain sizes. However, the small amount of on-board memory

ultimately limits the global domain size for a given number of GPUs. 1D decomposition is shown

to be the most efficient unless the local subdomain becomes too thin. Beyond, it is useful to

exploit 2D or half 3D decomposition with only a single neighbour in a given direction to limit

the number of MPI transfers. An overlap size of 16 grid points is shown to be a good trade

off between speed and accuracy, with larger overlaps becoming impractical due to the overhead

imposed by large MPI transfers. Compared to the CPU implementation using global domain

decomposition, the GPU version is always faster for an equivalent number of nodes. For produc-

tion simulations executed as part of ultrasound treatment planning, the GPU implementation

reduces the simulation time by a factor of 7.5 and the simulation cost by a factor of 3.8. This is

a promising result, given the GPUs utilized are now almost decommissioned.

In future, the code will be extended to model nonlinear wave propagation in heterogeneous

media, as considered in [2]. The implementation could also be further improved by exploiting

additional opportunities for overlapping communication and computation. First, the PCI-E and

MPI communication could be overlapped. Second, the possibility of peer-to-peer communication

among GPUs within the same node could be explored. This feature has the potential to eliminate

expensive intra-node MPI communications. Third, the CPU could be utilized for additional exe-

cutions, for example, assigning a subdomain to the idle CPU cores. Finally, multiple subdomains

of different sizes could be executed on a single GPU, which might allow the communication on

one subdomain to be overlapped while performing calculations on the others.

The project is financed from the SoMoPro II programme. The research leading to this in-

vention has acquired a financial grant from the People Programme (Marie Curie action) of the

Seventh Framework Programme of EU according to the REA Grant Agreement No. 291782.

The research is further co-financed by the South-Moravian Region. This work reflects only the

author’s view and the European Union is not liable for any use that may be made of the in-

formation contained therein. This work was also supported by the research project “Architecture

of parallel and embedded computer systems” Brno University of Technology (FIT-S-14-2297,

2014-2016), the Engineering and Physical Sciences Research Council, United Kingdom (grant

numbers EP/L020262/1 and EP/M011119/1), and the Ministry of Education, Youth and Sports,

Czech Republic (Large Infrastructures for Research, Experimental Development and Innovations

project “IT4Innovations National Supercomputing Center - LM2015070”). The work presented

here made use of Emerald, a GPU-accelerated High Performance Computer, made available by

the Science & Engineering South Consortium operated in partnership with the STFC Rutherford-

Appleton Laboratory. The authors would like to thank Alistair Rendell and Beau Johnston for

useful contributions to early versions of the k-Wave GPU kernels.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

J. Jaros, F. Vaverka, B.E. Treeby

2016, Vol. 3, No. 3 53

References

1. G. F. Pinton, J. Dahl, S. Rosenzweig, and G. E. Trahey, “A heterogeneous nonlinear at-

tenuating full-wave model of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,

vol. 56, no. 3, pp. 474–488, 2009. DOI: 10.1109/TUFFC.2009.1066.

2. J. Jaros, A. P. Rendell, and B. E. Treeby, “Full-wave nonlinear ultrasound simulation on

distributed clusters with applications in high-intensity focused ultrasound,” Int. J. High

Perf. Comput. Appl., vol. 30, no. 2, pp. 137–155, 2016.

3. J. Gu and Y. Jing, “Modeling of wave propagation for medical ultrasound: a review,” IEEE

Trans. Ultrason. Ferroelectr. Freq. Control, vol. 62, no. 11, pp. 1979–1992, 2015.

4. K. Okita, R. Narumi, T. Azuma, S. Takagi, and Y. Matumoto, “The role of numerical

simulation for the development of an advanced HIFU system,” Comput. Mech., vol. 54,

no. 4, pp. 1023–1033, 2014.

5. J. P. Boyd, Chebyshev and Fourier Spectral Methods. Mineola, New York: Dover Publica-

tions, 2001.

6. N. N. Bojarski, “The k-space formulation of the scattering problem in the time domain,” J.

Acoust. Soc. Am., vol. 72, no. 2, pp. 570–584, 1982.

7. T. D. Mast, L. P. Souriau, D. L. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-

space method for large-scale models of wave propagation in tissue.,” IEEE Trans. Ultrason.

Ferroelectr. Freq. Control, vol. 48, no. 2, pp. 341–354, 2001.

8. M. Tabei, T. D. Mast, and R. C. Waag, “A k-space method for coupled first-order acoustic

propagation equations,” J. Acoust. Soc. Am., vol. 111, no. 1, pp. 53–63, 2002.

9. B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound prop-

agation in heterogeneous media with power law absorption using a k-space pseudospectral

method,” J. Acoust. Soc. Am., vol. 131, no. 6, pp. 4324–4336, 2012.

10. M. I. Daoud and J. C. Lacefield, “Distributed three-dimensional simulation of B-mode ul-

trasound imaging using a first-order k-space method.,” Phys. Med. Biol., vol. 54, no. 17,

pp. 5173–5192, 2009.

11. J. C. Tillett, M. I. Daoud, J. C. Lacefield, and R. C. Waag, “A k-space method for acoustic

propagation using coupled first-order equations in three dimensions,” J. Acoust. Soc. Am.,

vol. 126, no. 3, pp. 1231–1244, 2009.

12. J.-L. Vay, I. Haber, and B. B. Godfrey, “A domain decomposition method for pseudo-spectral

electromagnetic simulations of plasmas,” J. Comput. Phys., vol. 243, pp. 260–268, 2013.

13. J. Jaros, V. Nikl, and B. E. Treeby, “Large-scale Ultrasound Simulations Using the Hy-

brid OpenMP/MPI Decomposition,” in Proceedings of the 3rd International Conference on

Exascale Applications and Software, pp. 115–119, Association for Computing Machinery,

2015.

14. M. Pippig, “PFFT-An extension of FFTW to massively parallel architectures,” SIAM J.

Sci. Comput., vol. 35, no. 3, pp. C213–C236, 2013.

Spectral Domain Decomposition Using Local Fourier Basis: Application to Ultrasound...

54 Supercomputing Frontiers and Innovations

15. M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” Proceedings of

the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

16. D. Pekurovsky, “P3DFFT: A Framework for Parallel Computations of Fourier Transforms

in Three Dimensions,” SIAM J. Sci. Comput., vol. 34, no. 4, pp. C192–C209, 2012.

17. A. Gholami, J. Hill, D. Malhotra, and G. Biros, “AccFFT: A library for distributed-memory

FFT on CPU and GPU architectures,” arXiv, p. arXiv:1506.07933, 2015.

18. K. Czechowski, C. Battaglino, C. McClanahan, and K. Iyer, “On the Communication Com-

plexity of 3D FFTs and its Implications for Exascale,” in Proceedings of International Su-

percomputing Conference, ACM, 2012. DOI: 10.1145/2304576.2304604.

19. M. Israeli, L. Vozovoi, and A. Averbuch, “Spectral multidomain technique with local Fourier

basis,” J. Sci. Comput., vol. 8, no. 2, pp. 135–149, 1993.

20. J. P. Boyd, “Asymptotic fourier coefficients for a C∞ bell (smoothed-”top-hat”) &

the Fourier extension problem,” J. Sci. Comput., vol. 29, no. 1, pp. 1–24, 2005.

DOI: 10.1007/s10915-005-9010-7.

21. M. Ding and K. Chen, “Staggered-grid PSTD on local Fourier basis and its applications to

surface tissue modeling.,” Optics Exp., vol. 18, no. 9, pp. 9236–9250, 2010.

22. M. Garbey and D. Tromeur-Dervout, “Parallel Algorithms with Local Fourier Basis,” J.

Comp. Phys., vol. 173, pp. 575–599, 2001.

23. A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications. New

York: Acoustical Society of America, 1989.

24. J.-P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electro-

magnetic waves,” J. Comput. Phys., vol. 127, no. 2, pp. 363–379, 1996.

25. J. P. Boyd, “A Comparison of Numerical Algorithms for Fourier Extension of the First,

Second, and Third Kinds,” J. Comput. Phys., vol. 178, no. 1, pp. 118–160, 2002.

26. M. J. Quinn, Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education

Group, 2003.

27. HPC Advisory Council, “Interconnect Analysis: 10GigE and InfiniBand in High Perfor-

mance Computing,” tech. rep., HPC Advisory Council, 2009.

28. B. E. Treeby and B. T. Cox, “A k-space Greens function solution for acoustic initial value

problems in homogeneous media with power law absorption,” J. Acoust. Soc. Am., vol. 129,

no. 6, pp. 3652–3660, 2011.

29. J. L. Robertson, B. T. Cox, and B. E. Treeby, “Quantifying numerical errors in the simulation

of transcranial ultrasound using pseudospectral methods,” in IEEE Int. Ultrason. Symp.,

pp. 2000–2003, 2014.

30. NVIDIA, “CUDA Toolkit Documentation v7.5,” tech. rep., NVIDIA, 2015.

31. NVIDIA, “cuFFT Library User’s Guide,” tech. rep., NVIDIA, 2015.

J. Jaros, F. Vaverka, B.E. Treeby

2016, Vol. 3, No. 3 55

