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The possibility of application of modern parallel computing solutions to speed up the cal-

culations of ground states of few-body nuclei by Feynman’s continual integrals method has been

investigated. These calculations may sometimes require large computational time, particularly in

the case of systems with many degrees of freedom. This paper presents the results of application

of general-purpose computing on graphics processing units (GPGPU). The energy and the square

modulus of the wave function of the ground states of several few-body nuclei have been calculated

using NVIDIA CUDA technology. The results show that the use of GPGPU significantly increases

the speed of calculations.
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Introduction

Low-energy reactions involving few-body nuclei [1] constitute a significant part of the studied

nuclear reactions. Investigation of their collisions with other nuclei provides valuable information

on the mechanisms of fusion and nucleon transfer reactions (e.g. [2]). Knowledge of the properties

and the ground state wave functions of these nuclei is necessary for the theoretical description

of reactions with their participation. The few-body problem in nuclear physics has been studied

for a long time. For instance, calculations of 3H and 3He nuclei were performed in [3] based on

the Faddeev equations. The expansion in hyperspherical functions (K -harmonics) [4] was used

for calculations of 3H nucleus in [5] and 4He nucleus in [6]. In [7] the wave function of the three-

body system was obtained using Gaussian basis and the numerical solution of the Hill-Wheeler

integral equations.

Feynman’s continual integrals method [8, 9] provides a more simple possibility for calculating

the energy and the probability density for the ground state of the few-body system, because it

does not require expansion of the wave function in a system of functions. This approach may

be realized using the Monte-Carlo method with imaginary time and continuous variation of

coordinates (e.g. [10–12]) or discrete coordinate lattice (e.g. within the nuclear lattice effective

field theory [13, 14]). The possibility of application of the Monte-Carlo method with imaginary

time and continuous variation of coordinates for calculation of energies of ground states of

light nuclei up to 4He was declared in [10, 11], but the power of computers available at that

time did not allow obtaining reliable results since the statistics was very low. Even today, the

authors usually either restrict themselves only to the calculation of energies of ground states

of few-body nuclei [12, 13] or perform the more time-consuming calculation of wave functions

with large lattice spacing (e.g. [14]), which is probably due to the lack of the computing power.

In [15] calculations of both energies of ground states and wave functions were performed on the

CPU with the statistics 105.

In this work an attempt is made to use modern parallel computing solutions to speed up the

calculations of ground states of few-body nuclei by Feynman’s continual integrals method. The

algorithm allowing us to perform calculations directly on GPU was developed and implemented

in C++ programming language. The energy and the square modulus of the wave function of the
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ground states of several few-body nuclei have been calculated using NVIDIA CUDA technology

[16–18]. The results show that the use of GPU is very effective for these calculations.

1. Theory

The energy E0 and the square modulus of the wave function |Ψ0|2 of the ground state

of a system of few particles may be calculated using continual (path) integrals introduced by

Feynman [8, 9]. Feynman’s integral

K (q, t; q0, 0) =

∫
Dq(t) exp

{
i

h̄
S
[
q(t′)

]}
=

〈
q

∣∣∣∣exp

(
− i
h̄
Ĥt

)∣∣∣∣ q0

〉
(1)

is a propagator - the probability amplitude for the particle of mass m to travel from the point q0

to the point q in time t. Here S[q(t)] and Ĥ are the action and the Hamiltonian of the system,

respectively, Dq(t) is the integration measure [8, 9]. For the time-independent potential energy

the transition to the imaginary (Euclidean) time t = −iτ gives the propagator KE (q, τ ; q0, 0)

KE (q, τ ; q0, 0) =

∫
DEq(τ) exp

{
−1

h̄
SE
[
q(τ ′)

]}
(2)

with the Euclidean action

SE
[
q(τ ′)

]
=

τ∫

0

dτ ′
[
m

2

(
dq

dτ ′

)2

+ V (q)

]
. (3)

Integration over q with the periodic boundary condition q = q0 allows us to find the energy

E0 of the ground state in the limit τ →∞ [10, 11]

∞∫

−∞

KE (q, τ ; q, 0) dq = Sp

[
exp

(
−Ĥτ

h̄

)]
=
∑

n

exp

(
−Enτ

h̄

)
+

∞∫

Econt

exp

(
−Eτ
h̄

)
g(E)dE, (4)

∞∫

−∞

KE (q, τ ; q, 0) dq → exp

(
−E0τ

h̄

)
, τ →∞, (5)

KE (q, τ ; q, 0) =
∑

n

|Ψn(q)|2 exp

(
−Enτ

h̄

)
+

∞∫

Econt

|ΨE(q)|2 exp

(
−Eτ
h̄

)
g(E)dE. (6)

Here g(E) is the density of states with the continuous spectrum E ≥ Econt. For the system with

a discrete spectrum and finite motion of particles the square modulus of the wave function of

the ground state may also be found in the limit τ →∞ [10, 11] together with the energy E0

h̄ lnKE (q, τ ; q, 0)→ h̄ ln |Ψ0(q)|2 − E0τ, τ →∞, (7)

KE (q, τ ; q, 0)→ |Ψ0(q)|2 exp

(
−E0τ

h̄

)
, τ →∞. (8)

The equation (7) may be used to find the energy E0 as the slope of the linear part of the curve

h̄ lnKE (q, τ ; q, 0) calculated for several increasing values of τ . The equation (8) may be used

to find the square modulus of the wave function of the ground state |Ψ0(q)|2 in all points q of
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the necessary region by calculating KE (q, τ ; q, 0) at the fixed time τ corresponding to the linear

part of the curve h̄ lnKE (q, τ ; q, 0).

Outside of the classically allowed region the square modulus of the wave function |Ψ0(q)|2
of the ground state with E < Econt may be significantly smaller than |ΨE(q)|2 for the

states with the continuous spectrum E ≥ Econt. The ground state term in the formula

(6) will not dominate despite the much more rapid decrease of the exponential factors

exp (−Eτ/h̄) � exp (−E0τ/h̄) , E > E0. Therefore, in this case the formulas (7), (8) are in

general applicable only for the region not far beyond the classically allowed ground state region.

Such situation may occur in the description of bound states of few-particle systems (e.g.

two protons and a neutron) when the existence of bound states of some of them (e.g. proton

plus neutron) is possible.

The contribution of states with the continuum spectrum may be eliminated by introducing

infinitely high walls in the potential energy located about the range of the nuclear forces beyond

the classically allowed region. Introduction of the boundary condition Ψ0(q) = 0 at these walls

will not have a significant effect on the energy E0 and |Ψ0(q)|2 far away from the walls.

Feynman’s continual integral (2) may be represented as the limit of the multiple integral

K (q, τ ; q0, 0) = lim
N→∞
N∆τ=τ

∫
· · ·
∫

exp

{
−1

h̄

N∑

k=1

[
m(qk − qk−1)2

2∆τ
− V (qk) + V (qk−1)

2
∆τ

]}
×

×CNdq1dq2 . . . dqN−1,

(9)

where

qk = q(τk), τk = k∆τ, k = 0, N, qN = q, C =
( m

2πh̄∆τ

)1/2
. (10)

Here (N − 1)-fold integral corresponds to averaging over the “path” of the particle as a broken

line in the plane (q, τ) with the vertices (qk, τk) , k = 1, N − 1.

For the approximate calculation of the continual integral (9) the continuous axis τ is replaced

with the grid τ = τk = k∆τ, k = 0, N,N ≥ 2 with the step ∆τ and the Euclidean propagator of

a free particle K
(0)
E (q, τ ; q0, 0) is separated [9, 10]

KE (q, τ ; q0, 0) ≈ K(0)
E (q, τ ; q0, 0)

〈
exp

[
−∆τ

2h̄

N∑

k=1

(V (qk) + V (qk−1))

]〉
, (11)

K
(0)
E (q, τ ; q0, 0) =

( m

2πh̄τ

)1/2
exp

[
−m(q − q0)2

2h̄τ

]
. (12)

Requiring qN = q0, we obtain

KE (q0, τ ; q0, 0) ≈ K(0)
E (q0, τ ; q0, 0)

〈
exp

[
−∆τ

h̄

N∑

k=1

V (qk)

]〉
, (13)

K
(0)
E (q0, τ ; q0, 0) =

( m

2πh̄τ

)1/2
. (14)

Here and below the angle brackets mean averaging of the values of the quantity F

F = exp

[
−∆τ

h̄

N∑

k=1

V (qk)

]
(15)
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over random trajectories, i.e. over (N − 1)-dimensional vectors Q = {q1, . . . , qN−1} with the

distribution law W (q0; q1, . . . , qN−1; qN = q0)

W (q0; q1, . . . , qN−1; qN = q0) = CN−1N1/2 exp

[
− m

2h̄∆τ

N∑

k=1

(qk − qk−1)2

]
. (16)

This averaging may be calculated using the Monte Carlo method [19]

〈F 〉 =
1

n

n∑

i=1

Fi, (17)

where n is the total number of random trajectories, n ∼ 105 - 107.

The standard algorithm for simulation of the random vector consists in a sequential choice of

the values of its components from the conditional distributions W1 (q1), W2 (q2|q1), W3 (q3|q1, q2),

..., WN−1 (qN−1|q1, q2, . . . , qN−2) [20]. Here Wk (qk|q1, q2, . . . , qk−1) is the probability density for

the values of the quantity qk given the values of quantities q1, q2, . . . , qk−1. For example, for k=1

W (q1) =

∫
dq2 . . .

∫
dqN−1W (q0; q1, q2, . . . qN−1; qN = q0) =

=
1√

2πσ1
exp

{
− 1

2σ1

[
(Mq1 − q1)2

]}
,

(18)

σ1 =
h̄∆τ

m

(
1− 1

N

)
,Mq1 = q0. (19)

In the case of k=2

W2 (q2|q1) =

∫
dq3 . . .

∫
dqN−1W (q0; q1, q2, q3, . . . qN−1; qN = q0) =

=
1√

2πσ2
exp

{
− 1

2σ2

[
(Mq2 − q2)2

]} 1√
2πσ1

exp

{
− 1

2σ1

[
(Mq1 − q1)2

]}
,

(20)

σ2 =
h̄∆τ

m

(
1− 1

N − 1

)
,Mq2 =

(
1− 1

N − 1

)
q1 +

1

N − 1
q0. (21)

Finally, in the general case

Wk (qk|q1, q2, . . . , qk−1) =

∫
dqk+1 . . .

∫
dqN−1W (q0; q1, q2, q3, . . . , qN−1; qN = q0) =

=
1√

2πσk
exp

{
− 1

2σ2

[
(Mqk − qk)2

]}
. . .

1√
2πσ1

exp

{
− 1

2σ1

[
(Mq1 − q1)2

]}
,

(22)

σk =
h̄∆τ

m

(
1− 1

N − k + 1

)
,Mqk =

(
1− 1

N − k + 1

)
qk−1 +

1

N − k + 1
q0. (23)

Introducing the variable Ak
Ak = (N − k + 1)−1 (24)

we obtain that the quantity qk is normally distributed with the mean value Mqk, variance Dk

and standard deviation σk =
√
Dk [15]

Mqk = (1−Ak) qk−1 +Akq0, (25)

Dk = (1−Ak) h̄∆τ/m, (26)
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σk = [(1−Ak)h̄∆τ/m]1/2. (27)

In the simulation the next point qk of the trajectory is calculated by the formula

qk= Mqk + ζkσk, k = 1, N − 1, (28)

where ζk is a normally distributed random variable with zero mean and unity variance. Sample

one-dimensional random trajectories for low N = 6 and large N = 1200 numbers of time steps

are shown in fig. 1a and fig. 1b, respectively.

Figure 1. Sample one-dimensional random trajectories for low N = 6 (a) and large N = 1200

(b) numbers of time steps

For large values of τ random trajectories may reach the region where the probability density

for the states with continuum spectrum is substantially larger than the probability density for

the ground state, which may lead to a deviation from the asymptotic behavior (7), (8) and the

growth of the error. Therefore, the formulas (7), (8) are only applicable for the not very large

values of τ .

For convenience of calculations in the scale of nuclear forces we introduce dimensionless

variables

q̃ = q/x0, τ̃ = τ/t0,∆τ̃ = ∆τ/t0, Ṽ = V (q)/ε0, Ẽ0 = E0/ε0, m̃ = m/m0, (29)

where x0 = 1 fm, ε0 = 1 MeV, m0 is the neutron mass, t0 = m0x
2
0

/
h̄ ≈ 1.57 · 10−23 sec,

b0 = t0ε0/h̄ ≈ 0.02412. The expressions (7), (8), (13), (16), (25) - (27) may now be represented

as

K̃E (q̃0, τ̃ ; q̃0, 0) ≈ x−1
0

(
m̃

2πτ̃

)1/2
〈

exp

[
−b0∆τ̃

N∑

k=1

Ṽ (q̃k)

]〉
, (30)

D̃k = σ̃2
k, q̃k= Mq̃k + ζkσ̃k, σ̃k = x0[(1−Ak)∆τ̃/m̃]1/2, (31)

W (q̃0; q̃1, . . . , q̃N−1; q̃N ) = CN−1N1/2 exp

[
− 1

2∆τ̃

N∑

k=1

(q̃k − q̃k−1)2

]
, (32)

1

b0
ln K̃E (q̃, τ̃ ; q̃, 0)→ 1

b0
ln |Ψ0(q̃)|2 − Ẽ0τ̃ , τ̃ →∞, (33)

K̃E (q̃, τ̃ ; q̃, 0)→ |Ψ0(q̃)|2 exp
(
−b0Ẽ0τ̃

)
, τ̃ →∞. (34)
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The above formulas are naturally generalized to a larger number of degrees of freedom and

few particles including identical ones. The nuclei 3H, 3He and 4He contain no more than two

identical fermions (protons and/or neutrons with opposite spins), which ensures that the Pauli

Exclusion Principle is satisfied for their ground states. The nucleon identity requires symmetriza-

tion of trajectories [11], which is achieved by choosing the Jacobi coordinates in such a way that

vectors connect two identical fermions (see below).

It should be noted that the calculation of multiple integrals required to find the multidi-

mensional probability density |Ψ0|2 by Feynman’s continual integrals method continues to be a

challenging task. However, the analysis of the properties of |Ψ0|2 allows us to choose analytical

approximations of |Ψ0|2, e.g. as the product of the Gaussian type exponentials. The obtained

approximations may be used in dynamic calculations. The application of the formula (7) in a

single point in the multidimensional space allows us to find the approximate value of the energy

of the ground state.

To reduce the number of degrees of freedom and multiplicity of integrals in the formula (11)

the calculation should be performed in the center of mass system using the Jacobi coordinates

[4, 9].

For a system of two particles (2H nucleus)

~R = ~r2 − ~r1, (35)

where ~r1 and ~r2 are the radius vectors of a proton and a neutron, respectively.

For a system of three particles, two of which are identical (2 neutrons or 2 protons in 3H

and 3He nuclei, respectively)

~R = ~r2 − ~r1, ~r = ~r3 −
1

2
(~r1 + ~r2) . (36)

In the case of 3H nucleus ~r3 is the radius vector of a proton, ~r1 and ~r2 are the radius vectors

of neutrons. In the case of 3He nucleus ~r3 is the radius vector of a neutron, ~r1 and ~r2 are the

radius vectors of protons.

For a system of four particles consisting of two pairs of identical particles (2 protons and 2

neutrons in 4He nucleus)

~R1 = ~r2 − ~r1, ~R2 = ~r4 − ~r3, ~r =
1

2
(~r3 + ~r4)− 1

2
(~r1 + ~r2) , (37)

where ~r1 and ~r2 are the radius vectors of protons, ~r3 and ~r4 are the radius vectors of neutrons.

The energy of the ground states of bound nuclei is negative E0 < 0, whereas the binding

energy Eb (the energy required to disassemble a nucleus into separate nucleons) is positive,

Eb = −E0 > 0.

In the calculation of the propagator K (q, τ ; q0, 0) for the nuclei 2H, 3H, 3He, 4He neutron-

proton Vn−p(r), neutron-neutron Vn−n(r) and proton-proton Vp−p(r) two-body strong interac-

tion potentials have been used. The dependence of the nucleon-nucleon strong interaction with

a repulsive core on the distance r was approximated by a combination of Gaussian type expo-

nentials similar to the M3Y potential [21, 22]

Vn−n(r) ≡ Vp−p(r) =
3∑

k=1

uk exp
(
−r2

/
b2k
)
, (38)

Vn−p(r) = ηVn−n(r). (39)
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The total interaction potential V (r) ≡ Vn−n(r) for two neutrons, V (r) ≡ Vn−p(r) for a neutron

and a proton, V (r) ≡ Vp−p(r)+e2/r for two protons (here the last term represents the Coulomb

part of the potential). The values of the parameters u1 = 500 MeV, u2 = −102 MeV, u3 = 2

MeV, b1 = 0.606 fm, b2 = 1.437 fm, b3 = 3.03 fm and η = 1.2 provide the absence of bound

states of two identical nucleons as well as the approximate equality of the energy Eb = −E0

found from the formula (33) to the experimental values of the binding energies for the nuclei
2H, 3H, 3He, 4He taken from the knowledge base [23] (the comparison is given in tab. 1 below).

The plots of the total interaction potential V (r) for two neutrons, a neutron and a proton, and

two protons are shown in fig. 2.

Figure 2. The neutron-proton (solid line), neutron-neutron (dashed line), and proton-proton

(dotted line) total interaction potentials V (r)

2. Implementation

The Monte Carlo algorithm for numerical calculations was developed and implemented

in C++ programming language using NVIDIA CUDA technology. The code samples are not

included in the publication, because the algorithm is described in detail in mathematical, physical

and implementation aspects, in contrast to e.g. [10, 11]. The paper itself is to a great extent the

description of the integration method which does not require the use of any additional integration

libraries. The detailed description of the algorithm provided allows anyone to easily implement

it.

The calculation included 3 steps:

1. K̃E (q̃, τ̃ ; q̃, 0) was calculated in a set of multidimensional points q̃ (e.g.
{
~R;~r
}

for 3H and

3He nuclei) and the maximum of K̃E (q̃, τ̃ ; q̃, 0) (i.e. |Ψ0|2) was found.

2. The point q̃0 corresponding to the obtained maximum was fixed, K̃E (q̃0, τ̃ ; q̃0, 0) was calcu-

lated for several increasing values of τ̃ and the linear region of ln K̃E (q̃0, τ̃ ; q̃0, 0) was found

for calculation of the energy Ẽ0 using formula (33).

3. The time τ̃lin corresponding to the beginning of the obtained linear region was fixed and

K̃E (q̃0, τ̃lin; q̃0, 0) (i.e. |Ψ0|2) was calculated in all points of the necessary region using for-

mula (34).

Application of CUDA technology to calculation of ground statesof few-body nuclei by...

86 Supercomputing Frontiers and Innovations



The calculation of K̃E (q̃, τ̃ ; q̃, 0) for the fixed τ̃ was performed by parallel calculation of

exponentials F

F = exp

[
−b0∆τ̃

N∑

k=1

Ṽ (q̃k)

]
(40)

for every trajectory in a given kernel launch, where N = τ̃ /∆τ̃ .

The principal scheme of the calculation of the ground state energy is shown in fig. 3. The

calculation of the propagator (30) is performed using L sequential launches of the kernel. Each

kernel launch simulates n random trajectories in the space evolving from the Euclidean time

τ̃ = 0 to τ̃j , where j = 1, L (see fig. 1). All trajectories with Nj = τ̃j/∆τ̃ time steps start at the

same point q(0) in the space and in the moment τ̃j return back to the same point q(0) according

to the probability distribution described above.

The choice of the initial point q(0) is arbitrary for τ̃ →∞, but it is clear that for the finite

values of τ̃ available in calculations the point q(0) must be located within the region Ω the

integral over which of the square modulus of the normalized ground state wave function is close

enough to unity ∫

Ω

|Ψ0 (q)|2dq ≈ 1 (41)

in order to ensure less number of time steps in the calculation and obtain more accurate results.

All threads in a given kernel launch finish at approximately the same time, which makes the

scheme quite effective in spite of the possible delays associated with the kernel launch overhead.

Besides, the typical number of kernel launches L required for the calculation of the ground state

energy usually does not exceed 100.

Starting from the certain time τ̃lin the obtained values of the logarithm of the propagator

b−1
0 ln K̃E (30) tend to lie on the straight line, the slope of which gives the value of the ground

state energy. The time τ̃lin is then used in the calculation of the square modulus of the wave

function.

The principal scheme of the calculation of the square modulus of the wave function is shown

in fig. 4. Similarly, the calculation is performed using M sequential launches of the kernel. Each

kernel launch simulates n random trajectories in the space evolving from the Euclidean time

τ̃ = 0 to the time τ̃lin determined in the calculation of the ground state energy. All trajectories

start at the same point q(s) in the space and in the moment τ̃lin return back to the same point

q(s) according to the probability distribution described above. Here s = 1,M , where M is the

total number of points in the space in which the square modulus of the wave function must be

calculated.

One of the benefits of the approach is that the calculation may be easily resumed at a later

time. For example, initially the square modulus of the wave function may be calculated with

a large space step to obtain the general features of the probability distribution, and later new

intermediate points are calculated and combined with those calculated previously. This may be

very useful because the calculation of the square modulus of the wave function is generally much

more time-consuming since it requires calculation in many points in the multidimensional space.

An important feature of the algorithm allowing effective use of graphic processors is low

consumption of memory during the calculation because it is not necessary to prepare a grid of

values and store it in the memory.

To obtain normally distributed random numbers the cuRAND random number generator

was used. According to the recommendations of the cuRAND developers each experiment was

M. Naumenko, V. Samarin

2016, Vol. 3, No. 2 87



Figure 3. The scheme of calculation of the ground state energy E0 using formula (33)

assigned a unique seed. Within the experiment, each thread of computation was assigned a

unique sequence number. All threads between kernel launches were given the same seed, and

the sequence numbers were assigned in a monotonically increasing way.

3. Results and discussion

Calculations were performed on the NVIDIA Tesla K40 accelerator installed within the

heterogeneous cluster [24] of the Laboratory of Information Technologies, Joint Institute for

Nuclear Research, Dubna. The code was compiled with NVIDIA CUDA version 7.5 for archi-

tecture version 3.5. Calculations were performed with single precision. The Euclidean time step

∆τ̃ = 0.01 was used. Additionally, NVIDIA GeForce 9800 GT accelerator was used for debugging

and testing purposes.

The dependence of logarithm of the propagator b−1
0 ln K̃E on the Euclidean time τ̃ is shown

in fig. 5 for nuclei 2H (a), 3H (b), 3He (c) and 4He (d). Different symbols correspond to different

statistics n: empty circles (105), filled circles (106, 5·106, 107).

The behavior of the curves may be easily explained if we note that in all these cases only

the energy of the ground state is negative and therefore only the first term in (6) increases with
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Figure 4. The scheme of calculation of the square modulus of the wave function |Ψ0(q)|2 using

formula (34)

the increase of τ̃ , whereas the energies of the excited states are positive and hence the other

terms in (6) decrease with the increase of τ̃ .

The results of linear fitting of the straight parts of the curves are shown in fig. 5e-h. According

to the formula (33) the slope of the linear regression equals the energy of the ground state

E0. The obtained theoretical binding energies Eb = −E0 are listed in tab. 1 together with the

experimental values taken from the knowledge base [23]. It is clear that the theoretical values are

close enough to the experimental ones, though obtaining good agreement was not the goal. The

observed difference between the calculated binding energies of 3H and 3He is also in agreement

with the experimental values.

The comparison of the square modulus of the wave function for 2H calculated on GPU

using NVIDIA CUDA technology within Feynman’s continual integrals method and the square

modulus of the wave function calculated on CPU within the shell model is shown in fig. 6a.

The same potentials (38), (39) were used. Good agreement between the curves confirms that the

code based on Feynman’s continual integrals method using NVIDIA CUDA technology provides

correct results.

It should be mentioned that the wave function cannot be measured directly, though the

charge radii and charge distributions obtained from experiments may provide some information
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Figure 5. The dependence of the logarithm of the propagator b−1
0 ln K̃E on the Euclidean time

τ̃ for 2H (a), 3H (b), 3He (c) and 4He (d). Lines are the results of linear fitting of the data lying

on the straight parts of the curves for 2H (e), 3H (f), 3He (g) and 4He (h). Different symbols

correspond to different statistics n: empty circles (105), filled circles (106, 5·106, 107)
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Table 1. Comparison of theoretical and experimental binding energies

for the ground states of the studied nuclei

Atomic nucleus Theoretical value, MeV Experimental value, MeV
2H 1.17 ± 1 2.225
3H 9.29 ± 1 8.482

3He 6.86 ± 1 7.718
4He 26.95 ± 1 28.296

Figure 6. (a) The square modulus of the wave function for 2H calculated on GPU using NVIDIA

CUDA technology within Feynman’s continual integrals method (circles) compared with the

square modulus of the wave function calculated on CPU within the shell model (line); r is the

distance between the proton and the neutron. (b) The theoretical charge distribution for 3He

(circles) compared with experimental data taken from taken from the knowledge base [23] (lines)

on its behavior. To compare the results of calculations with the experimental charge radii and

charge distributions the wave function must be integrated.

The probability density distribution
∣∣∣Ψ0

(
~R;~r
)∣∣∣

2
for the configurations of 3He nucleus (p+

p+n) with the angle θ = 0◦, 45◦, 90◦ between the vectors ~R and ~r is shown in logarithmic scale

in fig. 7a,b,c, respectively, together with the potential energy surface (linear scale, lines). The

vectors in the Jacobi coordinates are shown in fig. 7d.

The theoretical charge distribution for 3He obtained by integration of the wave func-

tion is compared with experimental data taken from taken from the knowledge base [23]

in fig. 6b. As can be seen, the agreement is very good. The obtained theoretical charge radius〈
R2
ch

〉1/2
= 1.94 fm is also very close to the experimental value 1.9664± 0.0023 fm.

The probability density distribution for the symmetric tetrahedral configuration of four

nucleons in the nucleus 4He

∣∣∣Ψ0

(
~R1;~r; ~R2

)∣∣∣
2

= |Ψ0 (R1x, 0, 0; 0, 0, rz; 0, R2y = R1x, 0)|2, (42)

~R1⊥~r⊥~R2,
∣∣∣~R1

∣∣∣ =
∣∣∣~R2

∣∣∣ , ~R1 = (R1x, 0, 0) , ~r = (0, 0, rz) , ~R2 = (0, R2y = R1x, 0) (43)

is shown in logarithmic scale in fig. 7e together with the potential energy surface (linear scale,

lines). The vectors in the Jacobi coordinates are shown in fig. 7f.
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Figure 7. The probability density for the configurations of 3He with θ = 0◦ (a), 45◦ (b), 90◦ (c)

and the vectors in the Jacobi coordinates (d). The probability density for the configuration of
4He symmetric with respect to the positions of protons and neutrons (e) and the vectors in the

Jacobi coordinates (f)

Note also that the presence of the repulsive core in the nucleon-nucleon interaction reduces

the probability of finding nucleons in the center of mass of the system for the considered sym-
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metric configurations. This should lead to a smoother increase in the concentration of nucleons

and the density of electric charge when approaching the center of the nucleus.

The analysis of the properties of |Ψ0|2 obtained by Feynman’s continual integrals method

was used to refine the shell model for light nuclei [15].

The code implementing Feynman’s continual integrals method was initially written for CPU.

The comparison of the calculation time of the ground state energy for 3He using Intel Core i5

3470 (double precision) and NVIDIA Tesla K40 (single precision) with different statistics is

shown in tab. 2. Even taking into account that the code for CPU used only 1 thread, double

precision and a different random number generator, the time difference is impressive. This fact

allows us to increase the statistics and the accuracy of calculations in the case of using NVIDIA

CUDA technology.

Table 2. Comparison of the calculation time of the ground state energy for 3He nucleus

Statistics, Intel Core i5 3470 NVIDIA Tesla K40 Performance gain,

n (1 thread, double precision), sec (single precision), sec times

105 ∼1854 ∼8 ∼232

106 ∼18377 ∼47 ∼391

5·106 - ∼221 -

107 - ∼439 -

The comparison of the calculation time of the square modulus of the wave function∣∣∣Ψ0

(
~R;~r
)∣∣∣

2
for the ground state of 3He using Intel Core i5 3470 and NVIDIA Tesla K40 with

the statistics 106 for every point in the space
{
~R;~r
}

and the total number of points 43200 is

shown in tab. 3. The value ∼177 days for CPU is an estimation based on the performance gain

in the calculation of the ground state energy. It is evident that beside the performance gain the

use of NVIDIA CUDA technology may allow us to reduce the space step in the calculation of the

wave functions, as well as greatly simplify the process of debugging and testing, and in certain

cases it may even enable calculations impossible before.

Table 3. Comparison of the calculation time of the square modulus of the

wave function for the ground state of 3He nucleus

Statistics, Intel Core i5 3470 NVIDIA Tesla K40

n (1 thread, double precision, estimation) (single precision)

106 ∼177 days ∼11 hours

4. Conclusion

In this work an attempt is made to use modern parallel computing solutions to speed up the

calculations of ground states of few-body nuclei by Feynman’s continual integrals method. The

algorithm allowing us to perform calculations directly on GPU was developed and implemented

in C++ programming language. The method was applied to the nuclei consisting of nucleons,

but it may also be applied to the calculation of cluster nuclei. The energy and the square modulus

of the wave function of the ground states of several few-body nuclei have been calculated by
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Feynman’s continual integrals method using NVIDIA CUDA technology. The comparison with

the square modulus of the wave function for 2H calculated on CPU within the shell model was

performed to confirm the correctness of the calculations. The obtained values of the theoretical

binding energies are close enough to the experimental values. The theoretical charge radius and

charge distribution for 3He nucleus are also in good agreement with the experimental data. The

results show that the use of GPGPU significantly increases the speed of calculations. This allows

us to increase the statistics and the accuracy of calculations as well as reduce the space step in

calculations of wave functions. It also greatly simplifies the process of debugging and testing. In

certain cases the use of NVIDIA CUDA enables calculations impossible before.

The work was supported by grant 15-07-07673-a of the Russian Foundation for Basic Re-

search (RFBR).

The paper is recommended for publication by the Program Committee of the “Parallel com-
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