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The different rates of increase for computational power and storage capabilities of super-
computers turn data storage into a technical and economical problem. As storage capabilities are
lagging behind, investments and operational costs for storage systems have increased to keep up
with the supercomputers’ I/O requirements. One promising approach is to reduce the amount of
data that is stored. In this paper, we take a look at the impact of compression on performance
and costs of high performance systems. To this end, we analyze the applicability of compression
on all layers of the I/O stack, that is, main memory, network and storage. Based on the Mistral
system of the German Climate Computing Center (Deutsches Klimarechenzentrum, DKRZ), we
illustrate potential performance improvements and cost savings. Making use of compression on a
large scale can decrease investments and operational costs by 50 % without negative impact on the
performance. Additionally, we present ongoing work for supporting enhanced adaptive compression
in the parallel distributed file system Lustre and application-specific compression.
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Introduction

Throughout the history of supercomputers as recorded by the TOP500 list, the computational
power has been increasing exponentially, doubling roughly every 14.5 months [36]. While this
increase in computational power has allowed more detailed numerical simulations to be performed,
this has also caused the simulation results to grow in size exponentially. Computational speed
and storage capacity have roughly increased by factors of 300 and 100 every 10 years, respectively.
The storage speed, however, has only grown by a factor of 20 every 10 years, even when taking
newer technologies such as SSDs into account. The different rates of improvement can be seen
in Figure 1.3 Thus, the importance of performing 1/O efficiently and storing the resulting data

cost-efficiently increases [23].
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Figure 1. Development of computational speed, storage capacity and storage speed

Although it is theoretically possible to compensate for this fact in the short term by simply
buying more storage hardware, new approaches are required to use the storage infrastructure
as efficiently as possible due to the ever increasing gap between the faster-growing processing
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power on the one hand and the lagging storage capacity and throughput on the other hand.
Data reduction techniques present one such approach and play an important role in today’s high
performance computing (HPC) systems. Data reduction can be used to reduce the costs and size
of storage systems, and to increase performance.

Overall, the storage subsystems can be responsible for a significant portion of a system’s
total cost of ownership. In the case of Mistral, it accounts for roughly 20 % of the overall costs.
This amount of storage is necessary due to the huge amounts of data. In phase 5 of the Coupled
Model Intercomparison Project (CMIP), a volume of 1.8 PB of data and 4.3 million files were
created [1]. An estimate of the Earth System Grid Federation (ESGF)* for the upcoming phase 6
project is between 36 PB and 90 PB [9].

In an effort to keep storage costs from increasing, data reduction techniques are increasingly
being deployed. Previous studies have shown that certain data reduction techniques can be
beneficial for large-scale storage systems [25]. However, due to their inherent costs and complexities,
techniques such as deduplication and re-computation are not suitable without restrictions. In
particular, deduplication typically yields lower data reduction rates and may degrade performance,
thus making it unsuitable for HPC [29, 30]. Compression can be deployed with relatively little
overhead and the integration into existing systems is much easier.

Being such a versatile concept, compression can be introduced with different goals on various
hardware and software levels. In this paper, we will investigate the possibilities of applying
compression to various levels of the HPC hardware /software stack. In this regard, we will analyze
typical storage behavior from a datacenter perspective and not focus on particular use cases or
data formats. Specifically, the following goals will be addressed:

1. Memory capacity. By compressing data in memory, additional memory becomes usable, and
out-of-core computing can be avoided. Usually, this can be done by providing two pools of
memory: one compressed pool for slower access and a regular pool, in which the working set
fits. Each time data from the compressed memory pool is required, it must be decompressed
and either migrated into the regular pool or directly into the CPU caches.

2. Network throughput. By compressing data before transmitting it via the network, commu-
nication performance can be increased. This typically requires fast compression algorithms,
but not necessarily compression speeds higher than the throughput of the network. In case
of storage systems, data does not have to be decompressed on the receiving side, leading to
further benefits.

3. I/0 throughput. Compressing data before writing it to the storage hardware can increase
overall I/O performance because less data has to be written. Conversely, less data has to be
read from the storage hardware, also increasing performance for the read case.

4. Storage capacity. In addition to the already mentioned performance benefits, compressing
data reduces its storage footprint, allowing more data to be stored with the same storage
hardware.

5. Cost and energy efficiency. Compression can be used to improve the cost efficiency of data
storage. Additionally, if data has to be archived for long periods of time, it can be worthwhile

compressing it using slower algorithms yielding higher compression ratios.’

‘http://esgf.11nl.gov/
SWe explicitly define compression ratio as the fraction of uncompressed size over compressed size, that is,
uncompressed size

compressed size
by the compression ratio, will also be used at some points in the paper; it indicates the fraction to which data can

compression ratio = . Due to its convenience, the inverse compression ratio, that is, 1 divided

be compressed.
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A proper integration of the mentioned approaches also allows avoiding decompression at
different levels of the stack, further increasing its effectiveness. Compression offers the chance
of improving the cost and energy efficiency of existing hardware, and also allows improving
performance. With respect to the above list, the main contributions of this paper are:

1. A thorough analysis of existing compression technologies regarding their applicability in high
performance computing and the 1/O stack.

2. Models to estimate the impact of compression on performance and cost of supercomputers
and their storage systems.

This paper is structured as follows: Section 1 contains state-of-the-art and related work
regarding the compression and its applicability in HPC contexts. In Section 2, we model the impact
of different compression techniques on performance and cost. We then describe ongoing work for
applying different types of compression in a parallel distributed file system and applications in
Section 3. Section 4 concludes the paper and discusses future work.

1. State-of-the-art and related work

A multitude of different compression algorithms and possibilities for applying compression
exist. In this section, we will describe approaches for addressing the goals in more details and
quantify their respective advantages and disadvantages.

1.1. Compression algorithms

There is a wide range of compression algorithms. General lossless compression algorithms,
such as DEFLATE [10] and LZO |[20], consider data to be an array of characters. Therewith, the
algorithm has to ensure that any sequence of characters can be compressed and reconstructed.
Usually, applications store more complex data types and compound structures. Knowing the
data structures would allow to reduce the required information in the compressed representation
as impossible configurations of data can be ignored. For instance, several lossless compression
algorithms specifically tailored to floating-point data are available [27, 33].

To improve performance, several approaches have been investigated. LZRW [39] is a variant
of the LZ77 [42| compression algorithm tuned for speed. The lz4fast algorithm is a new variant
of the 1z4 compression algorithm that allows users to specify an acceleration factor to improve
compression speed by sacrificing compressibility [41]. Preliminary tests have shown that 1z4fast
can reach up to several GB/s per core both for compression and decompression, making it
especially interesting for HPC. Because throughput requirements are increasing, algorithms
have also been ported to accelerators [32] and have been implemented in hardware |2, 4, §|
to accelerate compression speed. With SLDC [12], the tape technology LTO offers hardware-
accelerated compression performed by the tape drive. One drawback of this approach is that it is
not possible to know in advance how much capacity a tape drive actually has.

If the application knows the tolerable errors in the representation, lossy compression schemes
can reduce data further to the level that is needed to reconstruct the data with the required
precision. However, such an application-specific schema requires insight from the domain. IS-
ABELA [26] and ZFP [28] are compression schemes for floating-point data. ISABELA is a
preconditioner that reorders data to improve the efficiency of the later compression stages. ZFP
supports lossy compression and allows to define either the relative error tolerance or absolute
error tolerance. Multidimensional variables usually exhibit some locality and this smoothness of
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data even increases with the resolution of the simulation domain. Such regularities on grids can be
exploited by preconditioning the input data, for example, as done by ZFP and our own approach
MAFISC [18]. A compression scheme may even be tailored for a particular grid structure. Wang
et al. exploit the topology of icosahedral grids that are now common in atmospheric models by
mapping each rombus to a 2D matrix that can be compressed with wavelet schemes [37].

1.2. Memory capacity

Since the early days of personal computers, in-memory compression has been used to virtually
enlarge memory capacity. For example, in the early days of Intel’s 386 and MS-DOS, the
Quarterdeck Expanded Memory Manager (QEMM) has been widely used. For modern systems,
Linux’s zram framework provides a simple way to create compressed block devices [31]. To increase
the main memory capacity, these block devices can then be used as swap devices. For instance,
given a machine with 8 GiB of physical main memory, an additional 8 GiB zram block device can
be created. Assuming a compression ratio of 2.0, the zram block device would require 4 GiB of
physical main memory, providing a total of 12 GiB of main memory. Obviously, the final amount
of available main memory heavily depends on the data written to the compressed block device.

The impact on performance of this solution can be hard to predict because the data is not
compressed and decompressed on every access, but only if Linux decides that a page should be
swapped in or out. That is, live data will typically stay uncompressed and only be compressed
when the page containing it is swapped out. Whether a page should be swapped out is determined
by the kernel’s swappiness parameter.

Listing 1 shows the steps of setting up a compressed zram block device and using it as a swap
device. First, the zram kernel module has to be loaded to be able to use the zram framework.
Afterwards, the zramctl command line tool can be used to set up compressed block devices. In
this case, a block device with 8 GiB of space is set up using the first free identifier. It is also
possible to change the used compression algorithm and the number of compression streams to
increase performance. By default, the 1zo algorithm and only one compression stream are used.
Given sufficient parallelism from the application side, increasing the number of compression

streams can be used to effectively scale the compression throughput.

$ modprobe zram

$ zramctl --find --size 8G
/dev/zramO

$ mkswap /dev/zramO

$ swapon /dev/zramO

Listing 1. Setting up a compressed block device with a size of 8 GiB and using it as swap space

1.3. Network throughput

There are several approaches for message compression in the Message Passing Interface (MPI),
all of them virtually increasing network throughput. CoMPI allows compressing MPI messages
by adding a compression layer to the ADI of MPICH [16]. While beneficial in many cases, the
evaluation of HPC applications is conducted using Fast Ethernet and, thus, the applicability
to recent HPC systems is limited. Adaptive-CoMPI improves this approach by selecting the
compression algorithm at runtime and allowing developers to specify guiding information [17].
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Since the compression ratio depends on data properties such as the inherent redundancy, the
evaluation of this approach shows that it is able to improve throughput for some of the tested
scientific applications and may only degrade performance slightly. The PRAcTICaL.-MPI wrapper
transfers the strategy to a library that utilizes the MPI standard profiling interface (PMPI) [14].
Due to the portability of PMPI, it can be deployed without changing code or MPI implementation.

In [32], it has been discussed whether it is worthwhile to compress CPU/GPU data transfers
over the PCI-Express bus. However, due to the speed of PCle 3.0 (x16) in the order of 16 GB/s,
this idea has been discarded.

1.4. Storage capacity and throughput

Welton et al. compress network traffic between clients and the 1/0O forwarding layer to improve
performance [38]. Their evaluation is conducted on an Ethernet and a QDR InfiniBand connected
cluster. While on Ethernet, LZO increases performance significantly and even does not degrade
performance for random workloads, the performance of IB networks is degraded when applying
compression. The Autonomous and Parallel Compressed File System [22] is a FUSE file system
stacked on top of a local file system that transparently compresses data passed through it. It uses
LZ77 and adaptive Huffman encoding. The authors aim to select adaptively the algorithm based
on the data type (for example, text and movies).

In [15], Filgueira et al. apply their adaptive compression scheme of CoMPI to I/O. They
implement the I/O compression into the Papio parallel storage system that offers quality of
service (QoS). Writes are performed in atoms of stream_width, that is, the number of strips
times the stripe_size. Their approach provides heuristics to estimate compression rate and
network performance, and, thus, the achieved speedup. Based on the estimate and selected QoS,
the appropriate algorithm is selected. Compression of the data can then be performed by multiple
threads. The evaluation is conducted on a 10 Gbit Ethernet system but QoS limits throughput to
300 MB/s. It is demonstrated that the heuristics approximate the speedup of the compression
schemes well. The adaptive compression improves speedup in all cases but degrades with increasing

throughput. For reads, the achieved speedup is about 3/4 of the compression speed.

1.4.1. File systems

Currently, only a hand full of file systems support compression natively. All of them are local
file systems, the most important ones being btrfs [21], NTFS and ZFS [5]. Due to NTFS only
being available on Windows, however, it typically does not play a role in HPC.

btrfs supports compression on a per-extent level with a maximum size of 128 KiB. It supports
the compression algorithms LZO and zlib, which can be selected at mount time by specifying the
mount options compress or compress-force; they will either skip compression of incompressible
files or force compression of all files, respectively. Compression can also be enabled and disabled
for individual files and directories using the ¢ attribute of chattr. ZFS supports compression
on a per-record level with a typical maximum size of 128 KiB; newer versions of ZFS allow
recording sizes of up to 1 MiB, which can increase the efficiency of compression algorithms. ZFS
has support for zero-length encoding (zle), gzip (with levels 1-9), lzjb and 1z4. Compression can
be set individually for each file system using the zfs set compression command.
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1.5. Cost and energy efficiency

Cost and energy efficiency are important topics in high performance computing, as demon-
strated by initiatives, such as the Green500 list [35]. However, the impact of compression on these
two metrics has so far mainly been analyzed in the context of embedded and mobile devices, where
data transmission is especially expensive [3, 11, 34, 40|. Studies have shown that compression
can increase energy consumption instead of decreasing it. This is due to the fact that algorithms
might spend a disproportional amount of energy for compressing the data. That is, it is also
important to look at how much energy is consumed to compress a given amount of data (MB/J)
instead of only compression throughput (MB/s). While there have been studies on the energy
and performance impact of compression for data-intensive workloads such as MapReduce [7] and
for file systems in general [24], the cost aspect of the overall system has often been neglected. Our
own studies have shown that efficient compression algorithms can be beneficial both in terms of
performance and energy consumption even for HPC applications [6].

2. Modeling the impact of compression

An important factor when considering compression is its impact on performance. Depending
on the used compression algorithm, its settings and where compression is applied, it can be
either beneficial or detrimental for performance. The overall impact of introducing compression
into scientific workflows depends on the strategy, that is, which data to compress and when to
compress it, the characteristics of the data, the characteristics of the compression algorithm
and the hardware characteristics. In detail, the strategy determines the number of times data
is compressed /decompressed in the workflow. Time needed to compress/decompress is mainly
determined by the compression algorithm and the CPU but also influenced by the structure
of the data. The achieved compression ratio is mainly determined by the algorithm but is also
influenced by the compressibility of the data. The benefit of any strategy comes from virtually
increasing throughput and storage capacity in hardware components. Since characteristics of
compression algorithms vary, the best fitting algorithm for a given scenario can be chosen or
adaptively determined.

2.1. Performance considerations

For the following discussion, we assume an application consists of the three phases: compute,
communication and I/O, as shown in Figure 2. The overall runtime of the application is t =
tepu + tnet + tio. Note that if multiple phases of the same type are observable, we just accumulate

the time for each phase.

CPU Net 1/0

tcpu tnet tio

Figure 2. Phases of an HPC application

It could be an iterative algorithm — such as shown in Figure 3 — that uses asynchronous com-
munication and I/O to hide the time needed for communication and I/O. The exact composition
of the application does not matter, the total time spent in computation, communication and I1/0O
are labeled as tcpy, trher and t;,, respectively, since they utilize these hardware components.
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Figure 3. Phases of an HPC application when using asynchronous communication and 1/0

When introducing a compression strategy to communication and I1/O on the compute nodes,
this requires additional time to compress (¢.) when sending/writing data and to decompress
(tq) when receiving/reading data. Similarly, when compressing data structures in memory, the
computation pattern changes to include phases to compress/decompress from the compressed
memory pool to the CPU cache (not shown in the figures).

Let us first discuss the benefit of hardware-accelerated compression performed by the network
interface, this would allow to compress communication but also data on the I/O path without
overhead for the computation while still allowing RDMA. Moreover, if the I/O server can
disable decompression while receiving data blocks to be stored, that data can be stored in its
compressed form without additional costs (similarly for the read path). The application runtime
using this strategy becomes t= tepu + tnet + tio, where t includes the time for the compression
and decompression. For larger amounts of data, the network interface can overlap compression
with sending/receiving of data. Thus, it can hide the time needed for compression as long as
the performance of the compression algorithm is, at least, as fast as the network throughput.

trnet = Ct;nft and t;, = Ciﬁ, where cr,, is the compression ratio of phase p. In this case, this leads

to a total time f, as shown in Equation (1).

tnet + tio (1)

As hardware-accelerated compression/decompression is typically not available using current
hardware, it is important to also model the unaccelerated case. If the network interface does
not support compression and data is uncompressed in memory, then we have to explicitly
compress/decompress data, increasing the required CPU time t.p, by the time required for
compression (Z.) and decompression (¢4). This leads to an overall time ¢+, as shown in Equation (2),
where s, denotes the data size of phase p and p, denotes the performance of phase p.

N t t;
B = topu + =+ =ttt g
CT'net CTio
S S; S S
:tcpu+ net + 70 +ic+7d (2)

Pnet * CTnet Dio * CTo Pc Pd

In a perfectly balanced system, p;, = pnet. Performing this process only pays off, if the time
saved through compression (t — tcompressed) is larger than the time it takes to perform it (¢, +tq).

This leads us to the estimation in Equation (3), where cr~! is the inverse compression ratio.
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If we can pipeline compression and decompression on sender and receiver side, this equation
becomes p < min (p¢, pq) - (1 — cr~1). Using this equation, we can generate thresholds for when
compression pays off; the thresholds for three algorithms as measured on Mistral are shown in
Table 1. Actually, the network interface bandwidth is shared among all cores, thus, the value
determined can be multiplied with the number of cores.

Table 1. Network throughput thresholds for compression to
pay off without hardware acceleration (network throughput
has to be below given value)

Algorithm H CPU ‘ Pipelined ‘ CPU (24 cores) ‘ Pipelined (24 cores)
pithy | 791 MB/s | 1,170 MB/s 19,000 MB/s 28,000 MB /s
blosc || 389MB/s | 442MB/s 9,300 MB/s 10,600 MB/s

1zdfast | 914 MB/s | 1,330 MB/s 21,900 MB/s 31,900 MB/s

The performance benefit or drawback, when compressing network communication, can be
visualized in a 2D graph with the number of cores and the compression ratio as axes. Figure 4
illustrates the speedup for Mistral’s FDR InfiniBand and using the lz4fast compression algorithm
without hardware support. On our system, lzdfast achieves a throughput of roughly 2,900 MB/s
for compression and 6,500 MB /s for decompression.® It can be observed that using 17 cores and
an inverse compression ratio of 0.5, a speedup of 1.5 is possible. This almost matches the speedup
when upgrading from FDR to EDR InfiniBand (which is faster by a factor of 1.77) and can thus

be a viable approach to improve throughput without increasing costs for network equipment.

2.1.1. Parallel distributed file systems

Considering parallel distributed file systems, compression can either be applied on the clients
or on the servers. Both approaches have benefits and limitations. The maximum throughput (p)
in a parallel distributed file system is limited by several factors. The most important ones are
client (p.), network (p,) and server (ps) throughput, as shown in Equation (4).

b= min(pcapmps) (4)

pn, is static and independent on any potential data reduction taking place. p. and p,, however,

depend on memory throughput and are therefore heavily dependent on which compression algo-

5A random selection of files on the storage system has been chosen for analysis (7,335 files with a volume of
300 GiB). The files contain a representative sample of scientific data formats and text files. They are compressed
running independent compression/decompression jobs on 24 cores of a compute node concurrently. Throughout
the paper, all specified values are the arithmetic mean across these files.
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Figure 4. Performance multiplier when compressing communication on Mistral’s FDR InfiniBand

rithm and settings are used. In real systems, slow compression algorithms can be counterbalanced
to a certain extent by using write-behind caching, which allows applications to progress immedi-
ately and compression to take place in the background. For the sake of simplicity, we will assume
that all data has to be written immediately and performance is thus limited by the compression
algorithm’s throughput. Slow compression algorithms can therefore slow down overall I/O speed
significantly; their main benefits lie in further reducing the amount of data, saving costs. When
applying compression in a file system, there are several possible approaches:

1. When writing data, it is compressed on the client, sent to the server and stored there in its
compressed form. When reading the data again, the server returns the compressed data, which
is then decompressed on the client. This approach might have disadvantages when performing
small accesses because complete blocks of data have to be compressed and decompressed,
causing additional overhead. Further analyses regarding the actual impact are necessary as
HPC applications typically perform large accesses.

2. When writing data, it is compressed on the client and sent to the server. The server then
decompresses the data and stores it in its decompressed form. When reading the data again,
the server compresses the data, which is then decompressed on the client. This approach
causes additional overhead on the server but does not suffer from the small access problem

mentioned above because data can be accessed at finer granularity.
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Figure 5. Performance multiplier when (de)compressing data in the Lustre client
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Figures 5a to 5c¢ show the visualization of possible performance that increases for Mistral’s
Lustre file system. While Figures 5a and 5b contain the performance multipliers for writing
and reading the data using the first approach, respectively, Figure 5c shows the performance
when writing the data using the second approach. As can be seen, it is easier to improve
performance when decompressing data on read than when compressing it on write due to the
much higher decompression speeds of 1z4fast. Additionally, compressing the data on the client and
decompressing it on the server before actually writing it incurs additional overhead that requires
more cores to be worth it. Overall, while compression requires a significant amount of cores to
improve performance, it is also unlikely to degrade performance. Decompression, however, can
achieve higher performance with even a small amount of cores, showing the usefulness of this
approach.

2.2. Cost considerations

Besides its impact on performance, compression can also be an important factor in reducing
costs. While this mainly applies to the reduction of the data’s footprint, it can also have secondary
benefits such as being able to spend less money on main memory or network infrastructure.
Additionally, increase in throughput typically decrease costs indirectly because execution times
are reduced. There are two approaches when utilizing compression:

1. Using compression to reach the desired metric, such as storage capacity, main memory capacity
or network throughput. This allows spending less money for the respective component and
using the remaining money for different purposes.

2. Using compression to improve the desired metric. This involves spending the same amount of
money for the respective component while gaining more performance and/or capacity.

The following considerations will take both approaches into account. Depending on the
examined hardware component, one or the other makes more sense. All cost considerations will

be inspired by DKRZ’s current Mistral supercomputer.

Table 2. Compression throughput and ratio for selected
compression algorithms as measured using real data

Algorithm H Compression ‘ Decompression ‘ Ratio

1z4fast 2,945 MB/s 6,460 MB/s | 1.825
124 1,796 MB/s 5,178 MB/s | 1.923
1z4hc 258 MB/s 4,333 MB/s 2.0
1zo 380 MB/s 1,938 MB/s | 1.887

Xz 26 MB/s 97MB/s | 2.632
zlib 95 MB/s 610 MB/s | 2.326
zstd 658 MB/s 2,019 MB/s | 2.326

Table 2 shows the compression throughput and ratio for selected compression algorithms as
measured on a set of real data on Mistral’s storage system (for details, see Footnote 6). As can be
seen, the algorithms have vastly different compression throughputs and ratios. Some algorithms
such as zstd outperform other algorithms such as 1zo for both throughput and ratio, but usually
algorithms with lower throughputs also achieve higher compression ratios.
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2.2.1. Main memory

Typically, the amount of main memory in a supercomputer depends on the applications that
will be executed on it. Therefore, we will consider the goal of reaching a given amount of the
main memory per node and use compression to reduce the amount of necessary hardware. Mistral
has a total main memory capacity of roughly 320 TB. Assuming costs of €200 per 32 GB of the
main memory, the total costs for main memory only are € 2,000,000. Additionally, we will assume
that each node is equipped with 128 GB of the main memory, resulting in 2,500 nodes.”

Since we are interested in reaching a per-node main memory capacity of 128 GB, we can

calculate the amount of necessary physical main memory mem = =%« where mem is the

amount of physical main memory, mem, is the amount of the main memory after compression
and ratio is the average compression ratio. As mentioned previously, zram supports the 1z4 and

lzo compression algorithms. For 1z4 this would be % = 66.56 GB and for lzo % = 67.83 GB.

The main memory capacity of nodes can not be chosen freely and some main memory should
be reserved for keeping uncompressed data. Therefore, it would make sense to either use a
configuration with 96 GB of the main memory or to use a 64 GB configuration that relaxes the
128 GB requirement slightly. This configuration could reserve 4 GB for uncompressed data and
provide 60 GB - 1.923 = 115.38 GB or 60 GB - 1.887 = 113.2 GB of compressed main memory for
1z4 or 1zo, respectively. One important factor that has to be kept in mind is the main memory
throughput. While 124 is typically fast enough to saturate the memory bus if enough parallel
compression streams are used, 1zo is much slower. Even with 24 parallel streams, 1zo can only
achieve 24 - 380 MB/s = 9.12 GB/s.

Costs 3 Capacity (none) mmm Capacity (1z4) mm Capacity (1zo) ==
- 500
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—+ 300
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0
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128 96 64
Main memory capacity per node [GB]

Figure 6. Total costs and capacity in relation to the amount of main memory per node

Figure 6 shows three node configurations with 128, 96 and 64 GB of the main memory.
It contains the total costs required to procure the main memory and total capacities with no
compression, 1z4 and 1zo. For the configurations with 128 and 96 GB, the main memory is split
into an uncompressed and a compressed pool dynamically; only the necessary amount of the
main memory to reach a per-node capacity of at least 128 GB is compressed, the remaining
main memory is left uncompressed. For example, 1%%%3 = 66.56 GB are compressed for 1z4,
the remaining part is left uncompressed. For the 64 GB configuration, 60 GB are compressed
while 4 GB are left uncompressed, resulting in less than 128 GB capacity per node. As it can

be seen, the main memory’s cost efficiency — that is, the amount of memory per € — increases

as more main memory is compressed. Reducing the amount of the main memory is worthwhile

because it is responsible for roughly 10 % of the overall power consumption according to [23, page

"Mistral has roughly 3,000 nodes and features different main memory configurations.

2016, Vol. 3, No. 1 85




Data Compression for Climate Data

165]. However, as mentioned previously, zram’s impact on performance can be hard to predict.
Therefore, keeping a pool of uncompressed main memory for fast access makes sense. We will

investigate this approach and its impact on performance in more detail in the future.

2.2.2. Network

Compression can also be used to virtually increase network throughput. In the following,
we will investigate whether this can be translated into cost savings. As with the main memory,
the network can not be scaled arbitrarily but is limited to certain stages given by the used
network technology. For high performance computing, InfiniBand is one of the most common
network technologies and is available in several different speeds. The most widely used version is
FDR, which offers a latency of 0.7 us and a throughput of 54.54 Gbit/s when using four links.
The newest version, EDR, offers a latency of 0.5 us and a throughput of 96.97 Gbit/s using four
links. However, the older version QDR and Ethernet networks are also interesting due to their
potentially lower costs.

Mistral is using FDR InfiniBand. When using lz4fast and 24 cores, we can reach a maximum
compression throughput of 24 - 2,945 MB /s = 70,680 MB /s, which is enough to saturate even the
fastest network. We can saturate the FDR InfiniBand network using only three cores and achieve
a throughput of 99.54 Gbit/s due to the compression ratio of 1.825. This is even faster than
what EDR InfiniBand can offer. When looking at saving costs by choosing a slower interconnect,
however, even QDR InfiniBand could be used with its 32 Gbit/s throughput to achieve the same
performance as FDR InfiniBand. The throughput increases to 32 Gbit/s - 1.825 = 58.4 Gbit/s
when applying compression with 1z4fast in this case.
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Throughput (none) mHEE Throughput (zstd) =3
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Figure 7. Costs and throughput for network technology when compressing communication

Figure 7 shows the costs and throughput per node when equipping nodes (and switches) with
EDR, FDR, or QDR InfiniBand, 100 Gbit/s, 56 Gbit/s, or 10 Gbit/s Ethernet or Omnipath. The
maximum throughput is shown for 1z4fast and zstd. When using zstd with networks faster than
54 Gbit /s, the maximum throughput is limited due to zstd’s compression throughput. Therefore,
lz4fast is usually the better choice for high performance networks. Mistral’s FDR InfiniBand
network could be replaced with QDR InfiniBand when applying lz4fast compression for all
network communication, decreasing costs by 15 %. Alternatively, the per-node throughput could
be improved to roughly 100 Gbit/s or 125 Gbit/s when using lz4fast or zstd, respectively.
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2.2.3. Storage

As mentioned previously, Mistral’s storage system cost approximately € 6,000,000. The storage
is distributed across roughly 60 Scalable Storage Units (SSUs), which contain two complete storage
servers, and 60 Expansion Storage Units (ESUs) that are just JBODs, each connected to one SSU.
Therefore, we can assume a cost of € 100,000 per SSU/ESU pair with a base cost of € 10,000
per SSU/ESU pair and up to €90,000 for the HDDs.® Additionally, each SSU/ESU pair is
capable of providing 833 TB of capacity and delivering 10.8 GB/s of throughput. For the following
considerations, we will only take server-side compression into account because the performance
aspect of client-side compression has been implicitly included in the network throughput analysis.

Since the storage capacity and throughput can be scaled linearly by simply adding or removing
more SSU/ESU pairs, the resulting storage capacity only depends on the compression ratio. The
storage throughput depends on the compression throughput and the number of SSU/ESU pairs.
Therefore, we will consider different compression algorithms in this case. Additionally, we will
assume that the SSU’s CPUs are completely busy with the normal file system load, that is, we
will have to buy additional CPUs for the compression overhead. Each SSU/ESU pair is already
equipped with two 8-core CPUs and we will include additional costs of € 1,500 per SSU/ESU

pair for compression. To take different key aspects into account, we will consider two scenarios:

e S1: We determine the number of SSU/ESU pairs necessary to achieve a capacity of 50 PB
and only purchase this amount. This scenario will typically result in lower costs and
decreased throughput.

e S52: We determine the number of HDDs necessary to achieve a capacity of 50 PB and spread
these disks evenly across 60 SSU/ESU pairs. This scenario will typically result in both
slightly higher costs and higher throughput than S1.

Costs (S1) 3 Costs (S2) 3 Uncompressed costs
Throughput (S1) = Throughput (S2) B  Uncompressed throughput —

6.0 700
5.0 - 600
4.0 7 500
- 400
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w
o
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Compression algorithm

Figure 8. Storage costs and throughputs for different compression algorithms

Figure 8 shows the total costs and total throughput of Mistral’s storage system when using
the compression algorithms, shown in Table 2. First, we will take a look at scenario S1. As can
be seen, employing compression allows decreasing the amount of necessary SSU/ESU pairs and
thus costs. However, this also reduces the total throughput of the system because each SSU/ESU
pair can only deliver at most 10.8 GB/s. The lzdfast and lz4 algorithms manage to achieve more
than 10.8 GB/s per SSU/ESU pair and thus do not influence the throughput negatively on their
own. The maximum throughput of zstd is only slightly less than that; therefore, the performance

8An SSU/ESU pair might be cheaper because auxiliary infrastructure is required in addition to the pair. However,
for the purposes of modeling the possible savings, this estimation is good enough.
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degradation can be mostly neglected. For these algorithms, the decrease in total throughput is
caused exclusively by the reduction of the number of SSU/ESU pairs. However, lz4hc, xz and zlib
have low throughputs and therefore do decrease total throughput.

When looking at scenario S2, costs are slightly increased overall due to the base cost of each
SSU/ESU pair. However, the higher number of SSU/ESU pairs significantly increases throughput.
For 1z4 and lz4dfast, performance is not degraded at all and costs are decreased to roughly
€ 3,500,000. In zstd’s case, throughput is decreased insignificantly by 20 GB/s while costs are
reduced by 50 % to € 3,000,000.

2.3. Summary

The results presented in the previous sections draw a clear picture: using compression on
different levels of the I/O stack presents opportunities for both performance increases and cost
reductions. In the best case, the different approaches should be combined for their synergetic effects.
Table 3 shows an overview of the advantages and disadvantages on CPU utilization, memory
capacity, network throughput, storage capacity and cost savings when deploying compression on
different levels of the I/O stack.

Table 3. Design choices for compression on various levels

Strategy H CPU ‘ Memory | Network | Storage | Cost savings
Memory - + + 0 0
Communication - 0 + 0 0
I/O (client) - 0 + + +
I/O (server) - 0 0 + +
All levels - + + + +

3. Ongoing work

Due to the very promising perspectives regarding performance improvements and cost savings,
we have started to integrate compression into the HPC I/0 stack on several levels. In the following,
two approaches are described, one for lossless compression within the file system and one for lossy

application-specific compression.

3.1. File system compression

Parallel distributed file systems typically do not have support for compression. However,
several of them use underlying local file systems such as btrfs or ZFS and thus allow using those
with compression support. While OrangeFS can use any POSIX file system, Lustre is limited to
either 1diskfs or ZF'S [19]|. Consequently, using Lustre with its ZFS backend, it is possible to enable
compression on a Lustre file system. However, Lustre currently has no support for compression,
that is, it can not enable it by itself and has no knowledge of whether it is active or not.

When using this approach, data is only compressed within ZFS, as can be seen on the left
side of Figure 9. This has several implications: since data is only compressed when arriving
on the file system servers, there are no benefits regarding network throughput. If the network

is a bottleneck for overall 1/O performance, this can be a significant disadvantage. However,
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since compression is performed on the servers, it also can not have an influence on application
performance. This influence might be problematic, if I/O is performed asynchronously and in
parallel to the computation. Another benefit is that this setup can be deployed without any
modifications to Lustre as long as Lustre’s ZFS backend is used. Depending on the chosen
compression algorithm, CPU overhead might be introduced on the file system servers, which
might also have an influence on energy consumption. If particularly slow algorithms are used,
they will also negatively impact /O performance. However, this level of support already enables
the cost savings presented in Section 2.2.3.
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Network Network
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Figure 9. Comparison of different levels of support for compression in Lustre. Left: Compression

is only performed on the servers. Right: Compression is performed on the clients

As part of our work within the Intel Parallel Computing Center “Enhanced Adaptive Com-
pression in Lustre,” we will add compression support to Lustre. This will include support for
performing compression on both the clients and servers. Additionally, compression will be adaptive,
that is, adjust itself according to the data to be compressed and several performance metrics.
Applications will be able to influence the compression via Lustre’s ladvise interface. This will
allow proper integration with third-party applications and 1/O libraries. On the one hand, appli-
cations already performing application-specific compression will be able to turn off compression as
necessary through this interface. On the other hand, the compression support will be completely
transparent to applications and libraries if they do not make use of this interface.

Once finished, this will bring compression support to the level depicted on the right side of
Figure 9, that is, Lustre will have information about the compression status and act accordingly.
For instance, data compressed on the client can be stored directly on the file system servers
without decompression, reducing overhead. However, in case if a long-term archival is desired,
the data might also be recompressed using different compression algorithms on the servers for
higher space savings. While performing the compression on the clients might negatively influence
applications, network throughput can be virtually increased by reducing the amount of data
that has to be transferred via the network. However, as this compression will only be performed
during the applications’ I/O phases, interference should be minimal as long as sufficiently fast
compression algorithms are used and/or 1/0O is not performed asynchronously.

Another major new feature will be adaptive compression. We have started working on support
for adaptive compression within ZFS [13]. This support will be further modularized and its
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underlying functionality will be used in the Lustre client. Even though ZFS stores the used
compression algorithm on a per-record level, it can only be set on a per-file-system level. Because
modifying this file system parameter frequently does not make sense and is too coarse-grained,
additional functionality is required. While 124 is an appropriate compression algorithm for high
performance 1/0, gzip is more suitable for archival purposes due to its higher compression ratios.
Lustre uses a single ZF'S file system for each OST and MDT, therefore making it impossible
to work around the problem using multiple file systems. Consequently, Lustre could either be
tuned for high performance or archival, but not both. Adaptive compression allows selecting an
appropriate compression algorithm based on different selection criteria during runtime. Based on
client-provided information about the desired compression mode (high performance or archival),
a cost function can be used to select the best compression algorithm for the current data.
Additionally, performance metrics will be included in the decision process to make sure that

clients and servers do not get overloaded.

3.2. Application-specific compression

To complement our file system approach, we have started to develop the Scientific Compres-
sion Library (SCIL) that allows fine-grained control over expected data accuracy metrics and
performance behavior within the DFG-funded project AIMES.? Based on user-supplied hints,
data properties and system performance characteristics, the library will adaptively choose the
compression pipeline (algorithms) on behalf of the user. Therewith, users do not have to predefine
the algorithm but can define the parameters that matter from the application point of view.
Deploying an improved algorithm can then automatically benefit many existing applications.
Amongst other goals, this library will be embedded as a filter into HDF5. We also push domain-
specific solutions for icosahedral grids. Integrating approaches on both the application level and

within the file system will allow us to maximize the benefits achieved by compression.

4. Conclusion and future work

Based on the results obtained by modeling the impact of compression on performance and
costs, applying compression throughout the whole 1/O stack is a viable approach to improve
performance and decrease costs. Due to new and upcoming high performance compression
algorithms, such as lz4fast, it is now possible to compress data at all levels of the storage hierarchy
without sacrificing performance or increasing costs. In fact, our analyses have shown that it
is possible to reduce costs of large-scale storage systems by up to 50 % without any negative
impact on throughput or capacity. If costs are not a concern, compression can be used to improve
performance by up to 133 % for network communication.

To leverage these benefits, we will integrate support for adaptive compression in Lustre. This
will allow users to increase their file system’s capacity without significant performance impacts.
However, as the file system is limited in its insight into the applications’ data, we will continue
to explore new possibilities of application-specific compression with our Scientific Compression
Library. Both approaches will interact to avoid unnecessary overhead and increase efficiency.

https://wr.informatik.uni-hamburg.de/research/projects/aimes/
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